Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pedagogical innovation efforts in engineering education and other STEM fields highlight some of the inherent challenges and opportunities in the process of strengthening undergraduate education. While interactive pedagogical approaches involving peer teamwork and a mix of in-person and online resources have strengthened the quality of teaching/learning, few studies provide a close-up examination of how faculty members navigate the implementation of new learning systems developed in other institutional settings. In this paper we examine factors contributing to the lack of sustained adoption of an engineering learning system called Freeform in a new academic context. We found that while students lauded the learning system’s potential for deep learning practices, the lead instructor encountered several challenges in its implementation which precluded him from adopting the system in the long term. While the lead instructor recognized the pedagogical value of Freeform in helping students engage deeply with engineering concepts, he found its implementation to differ too greatly from his traditional teaching trajectory in addition to increasing his preparation workload and having other logistical barriers. Ultimately, Freeform was not compatible with the specific institutional culture of the engineering department where the study took place. We offer some potential solutions to ameliorate issues of compatibility when attempting to diffuse and implement pedagogical systems in different institutional contexts.more » « less
-
Despite a large body of work devoted to understanding why instructors struggle to implement reformed instructional practices, researchers only understand part of the variation in instructor learning and implementation of the practices. This narrative inquiry case study explored how a mechanical engineering department adopted and adapted Freeform (Ff), which is a pedagogical system, that includes instructional resources and instructional ethos. Findings show that the department adopted Ff with a vision to standardize its dynamics course. The three instructors of four sections of the course had some shared and unshared mental models of engineering teaching and learning that somewhat aligned with the vision. While one instructor adopted all five critical components of Ff in her teaching, the other two instructors did not leverage all the components. The instructors shared some resources for the course and discussed their teaching with others but not sufficient to come to a consensus on the final exam. Consequently, the department could standardize the course materials, homework, quizzes, and schedule, but not the final exam. Via eliciting different dimensions of organizational learning that occurred at the mechanical engineering department, the research suggests ways to improve adopting reformed instructional practices. Moreover, our study contributes to the body of literature by revealing the complexity of instructors’ decision-making to adopt and adapt Ff and the relationship and interaction among disciplines of organizational learning in the context of teaching the dynamics course.more » « less
-
Context: Effective reform of engineering education necessitates the widespread implementation and dissemination of pedagogical innovations globally. However, to ensure the successful propagation of these innovations, we need to better understand the adaptations that they undergo when adopted at a new institution, and the extent to which they differ from the original innovation. This includes understanding the student experience with the innovation. Purpose or Goal: This study examines the propagation and adaptation of Freeform, a learning environment for teaching an undergraduate dynamics course developed at a large Midwestern university in the United States. Specifically, our goal is to understand how students at an adopting institution used Freeform’s learning resources. Our research questions are: 1) What are the students’ archetypical patterns of resource usage at the adopting institution? 2) In what ways do those patterns differ from those of students at the original institution of Freeform? Methods We conducted a model-based clustering analysis to answer our two research questions. The analysis was conducted on survey data from 50 engineering students at the Freeform adopting institution. This data articulated how frequently students used nine different resources of the Freeform ecosystem. Outcomes: Our analysis identified 4 resource-usage patterns in the Freeform adopting institution in comparison to 9 patterns for students at the institution where Freeform originated. In the Freeform adopting institution, the most frequent resources that students utilized were Teaching Assistants (TAs) and other students who were not enrolled in the course. This contrasts with the original institution where students relied mostly on the course lecturebook and their classmates. Conclusion: This study highlights the importance of taking into consideration the differences across institutions when propagating pedagogical innovations such as Freeform. Our results suggest that instructors should anticipate those differences so that the adoption and onboarding process can be optimized for success.more » « less
-
Engineering identity development is crucial for engineers’ professional performance, personal fulfillment, and organization’s success. Various factors including recognition by others, interest, and competence can affect the development of engineering identity. Participation in engineering-related activities, such as involvement in makerspaces, can lead to increases in engineering self-efficacy and can provide opportunities for students’ to be recognized as engineers, potentially promoting the development of their engineering identity. However, participation in makerspaces is not necessarily equal across all student groups, with the potential for white, man-dominated cultures of engineering to be replicated in makerspaces, preventing students from marginalized groups from feeling welcome or participating. Earning microcredentials and digital badges in makerspaces has the potential to encourage participation and provide a means for recognition. The goal of this two-year project (funded by NSF’s PFE: Research Initiation in Engineering Formation program) is to study engineering students’ engineering identity development and how makerspaces and digital badges can contribute to this development process. Towards this goal, we interviewed a diverse cohort of eight first-year engineering students at a large, land-grant, Hispanic-Serving Institution in the U.S. during the Fall 2022 semester. Students participated in two one-hour interviews at the start and end of the semester on topics including their making skills, experiences in the makerspace, participation level in groups, perceived recognition as engineers, and feeling of belongingness in the engineering community and makerspaces. This paper presents lessons-learned from the interview implementation process, including dealing with disruptions from the ongoing pandemic and traumatic campus events. We also present emerging themes from qualitative analysis of the interviews. We expect the implications of this work to guide instructors and administrators in developing more motivating and interactive engineering courses and makerspace experiences for diverse students.more » « less
An official website of the United States government

Full Text Available