skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Do students’ resource-usage patterns vary across institutions? Implementing a pedagogical innovation in an undergraduate engineering course
Context: Effective reform of engineering education necessitates the widespread implementation and dissemination of pedagogical innovations globally. However, to ensure the successful propagation of these innovations, we need to better understand the adaptations that they undergo when adopted at a new institution, and the extent to which they differ from the original innovation. This includes understanding the student experience with the innovation. Purpose or Goal: This study examines the propagation and adaptation of Freeform, a learning environment for teaching an undergraduate dynamics course developed at a large Midwestern university in the United States. Specifically, our goal is to understand how students at an adopting institution used Freeform’s learning resources. Our research questions are: 1) What are the students’ archetypical patterns of resource usage at the adopting institution? 2) In what ways do those patterns differ from those of students at the original institution of Freeform? Methods We conducted a model-based clustering analysis to answer our two research questions. The analysis was conducted on survey data from 50 engineering students at the Freeform adopting institution. This data articulated how frequently students used nine different resources of the Freeform ecosystem. Outcomes: Our analysis identified 4 resource-usage patterns in the Freeform adopting institution in comparison to 9 patterns for students at the institution where Freeform originated. In the Freeform adopting institution, the most frequent resources that students utilized were Teaching Assistants (TAs) and other students who were not enrolled in the course. This contrasts with the original institution where students relied mostly on the course lecturebook and their classmates. Conclusion: This study highlights the importance of taking into consideration the differences across institutions when propagating pedagogical innovations such as Freeform. Our results suggest that instructors should anticipate those differences so that the adoption and onboarding process can be optimized for success.  more » « less
Award ID(s):
1915574
PAR ID:
10543558
Author(s) / Creator(s):
; ;
Publisher / Repository:
Research in Engineering Education Symposium-2024
Date Published:
Subject(s) / Keyword(s):
pedagogical innovation, help seeking behavior, resource usage.
Format(s):
Medium: X
Location:
Hubballi, India
Sponsoring Org:
National Science Foundation
More Like this
  1. Pedagogical innovation efforts in engineering education and other STEM fields highlight some of the inherent challenges and opportunities in the process of strengthening undergraduate education. While interactive pedagogical approaches involving peer teamwork and a mix of in-person and online resources have strengthened the quality of teaching/learning, few studies provide a close-up examination of how faculty members navigate the implementation of new learning systems developed in other institutional settings. In this paper we examine factors contributing to the lack of sustained adoption of an engineering learning system called Freeform in a new academic context. We found that while students lauded the learning system’s potential for deep learning practices, the lead instructor encountered several challenges in its implementation which precluded him from adopting the system in the long term. While the lead instructor recognized the pedagogical value of Freeform in helping students engage deeply with engineering concepts, he found its implementation to differ too greatly from his traditional teaching trajectory in addition to increasing his preparation workload and having other logistical barriers. Ultimately, Freeform was not compatible with the specific institutional culture of the engineering department where the study took place. We offer some potential solutions to ameliorate issues of compatibility when attempting to diffuse and implement pedagogical systems in different institutional contexts. 
    more » « less
  2. null (Ed.)
    Prior research indicates that empathy can help engineers achieve better outcomes in team-based, design, entrepreneurial, and humanitarian environments. We describe an educational innovation designed to teach engineering students empathic communication skills. Written in the spirit of a propagation (versus dissemination) paradigm, we focus on how the original innovation was adapted to fit into two instructional settings that differed from the first implementation context. We use first person instructor accounts to describe these adaptation processes, including interactions between the developers and the adopters of the innovation, what modifications were necessary to “fit” the innovation into the new settings, and adopter experiences. We conclude with a brief discussion of particularly salient propagation considerations that emerged for the two adopters including, for example, the amount of instructional time available for implementing the empathic communication exercises, and how to achieve student buy-in in different course settings. The two main contributions of this paper are, first, the rich descriptions of how features of the original educational innovation had to be modified to meet the two other settings’ pedagogical goals and, second, an example of how to advance scholarship that supports the propagation of engineering education teaching and learning innovations. 
    more » « less
  3. Engineering education researchers and practitioners have driven instructional innovation in undergraduate engineering instruction. Much of the research about educational innovation has focused on undergraduate classrooms in large enrollment courses and/or research-intensive institutions. Propagation of innovations across settings, especially those quite unlike the original context, has received less attention in the literature. This includes liberal arts institutions, which collectively educate a large number of undergraduate engineering students in various contexts. Therefore, this study focuses on the implementation of an instructional innovation in a liberal arts institution that started a new engineering program to educate a regional engineering workforce. This qualitative study documented the experiences of one engineering instructor who adopted and adapted a blended learning environment for undergraduate dynamics designed to promote active and collaborative learning in undergraduate engineering courses. We analyzed interviews, documents, artifacts, visual materials, and field notes to examine the propagation of the instructional system in context with cultural features in local institution settings. Our findings show how an engineering instructor orchestrated a culture-aligned adoption and adaptation of an instructional innovation. Using reflective practice, the research participant adapted the implemented innovative instruction to their hands-on institution culture, such as adjusting expectations in content, adapting resources to students’ individual needs, adjusting uncertainty of problem solving, and adapting to a hands-on institution culture. This research highlights the important role of institutional culture in local adaptations of educational innovations, and it provides the community with an expanded way to think about innovation propagation. 
    more » « less
  4. Background. Academic help-seeking benefits students’ achievement, but existing literature either studies important factors in students’ selection of all help resources via self-reported surveys or studies their help-seeking behavior in one or two separate help resources via actual help-seeking records. Little is known about whether computing students’ approaches and behavior match, and not much is understood about how they transition sequentially from one help resource to another. Objectives. We aim to study post-secondary computing students’ academic help-seeking approach and behavior. Specifically, we seek to investigate students’ self-reported orders of resource usage and whether these approaches match with students’ actual utilization of help resources. We also examine frequent patterns emerging from students’ chronological help-seeking records in course-affiliated help resources. Context and Study Method. We surveyed students’ self-reported orders of resource usage across 12 offerings of seven courses at two institutions, then analyzed their responses using various help resource dimensions identified by existing works. From two of these courses (an introduction to programming course and a data science course, 11 offerings), we obtained students’ help-seeking records in all course-affiliated help resources, along with code autograder records. We then compared students’ reported orders in these two courses against their actions in the records. Finally, we mined sequences of student help-seeking events from these two courses to reveal frequent sequential patterns. Findings. Students’ reported orders of help resource usage form a progression of clusters where resources in each cluster are more similar to each other by help resource dimensions than to resources outside of their cluster. This progression partially confirms phenomena and decision factors reported by existing literature, but no factor/dimension alone can explain the entire progression. We found students’ actual help-seeking records did not deviate much from their self-reported orders. Mining of the sequential records revealed that help-seeking from course-affiliated human resources led to measurable progress more often than not, and students’ usage of consulting/office hours (mainly run by undergraduate teaching assistants) itself was the best indicator for future usage within the lifespan of the same assignment. Implications. Our results demonstrate that computing students’ help resource selection/utilization is a sophisticated process that should be modeled and analyzed with sufficient awareness of its inherent sequentiality. We identify future research directions through this preliminary analysis, which can lead to a better understanding of computing students’ help-seeking behavior and better resource utilization/management in large-scale instructional contexts. 
    more » « less
  5. This work investigates how innovations propagate through two professional networks (guilds): the Kern Entrepreneurial Engineering Network (KEEN) and the Consortium to Promote Reflection in Engineering Education (CPREE). Previous research has demonstrated that the adoption of pedagogical innovations is supported by the socialization of the innovation among potential adopters. In this work, we use social network analysis to explore the impact of professional connections on innovation adoption. Our research questions are: (1) How does overall social structure differ between guilds? (2) How do measures of social network structures relate to innovation adoption? A survey was distributed to members of KEEN and CPREE to capture the interactions respondents had while adopting the guild’s innovation. Social networks were generated for each guild and each respondent. These networks were analyzed to identify relationships between social network measures and the frequency of use of the innovation. Responses to open-ended questions were analyzed using thematic coding. The guilds’ overall structures impacted the formation and structure of distinct clusters/cliques, but these differing structures did not appear to affect sustained adoption. Individuals’ ego networks demonstrated a weak negative correlation between the frequency of adoption and the individual’s ego network density. Our results imply that having a diverse network exposes instructors to more ideas or allows them to see one idea from many perspectives. 
    more » « less