Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.The determination of accurate photometric redshifts (photo-zs) in large imaging galaxy surveys is key for cosmological studies. One of the most common approaches is machine learning techniques. These methods require a spectroscopic or reference sample to train the algorithms. Attention has to be paid to the quality and properties of these samples since they are key factors in the estimation of reliable photo-zs. Aims.The goal of this work is to calculate the photo-zsfor the Year 3 (Y3) Dark Energy Survey (DES) Deep Fields catalogue using the Directional Neighborhood Fitting (DNF) machine learning algorithm. Moreover, we want to develop techniques to assess the incompleteness of the training sample and metrics to study how incompleteness affects the quality of photometric redshifts. Finally, we are interested in comparing the performance obtained by DNF on the Y3 DES Deep Fields catalogue with that of the EAzY template fitting approach. Methods.We emulated – at a brighter magnitude – the training incompleteness with a spectroscopic sample whose redshifts are known to have a measurable view of the problem. We used a principal component analysis to graphically assess the incompleteness and relate it with the performance parameters provided by DNF. Finally, we applied the results on the incompleteness to the photo-zcomputation on the Y3 DES Deep Fields with DNF and estimated its performance. Results.The photo-zsof the galaxies in the DES deep fields were computed with the DNF algorithm and added to the Y3 DES Deep Fields catalogue. We have developed some techniques to evaluate the performance in the absence of “true” redshift and to assess the completeness. We have studied the tradeoff in the training sample between the highest spectroscopic redshift quality versus completeness. We found some advantages in relaxing the highest-quality spectroscopic redshift requirements at fainter magnitudes in favour of completeness. The results achieved by DNF on the Y3 Deep Fields are competitive with the ones provided by EAzY, showing notable stability at high redshifts. It should be noted that the good results obtained by DNF in the estimation of photo-zsin deep field catalogues make DNF suitable for the future Legacy Survey of Space and Time (LSST) andEucliddata, which will have similar depths to the Y3 DES Deep Fields.more » « less
-
Abstract We present the full Hubble diagram of photometrically classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7000 host galaxies. Based on the light-curve quality, we select 1635 photometrically identified SNe Ia with spectroscopic redshift 0.10 <z< 1.13, which is the largest sample of supernovae from any single survey and increases the number of knownz> 0.5 supernovae by a factor of 5. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters are 0.017 in a flat ΛCDM model, and = (0.082, 0.152) in a flatwCDM model. Combining the DES SN data with the highly complementary cosmic microwave background measurements by Planck Collaboration reduces by a factor of 4 uncertainties on cosmological parameters. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time.more » « less
-
Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements ( ) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining cold dark matter ( ) parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure and . Compared to constraints from primary cosmic microwave background (CMB) anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ( ) for the two-parameter difference. We further obtain which is lower than the measurement at the level. The combined SPT cluster, DES , and datasets mildly prefer a nonzero positive neutrino mass, with a 95% upper limit on the sum of neutrino masses. Assuming a model, we constrain the dark energy equation of state parameter and when combining with primary CMB anisotropies, we recover , a difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology and our analysis paves the way for upcoming joint analyses of next-generation datasets. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
-
We present galaxy-galaxy lensing measurements using a sample of low surface brightness galaxies (LSBGs) drawn from the Dark Energy Survey Year 3 (Y3) data as lenses. LSBGs are diffuse galaxies with a surface brightness dimmer than the ambient night sky. These dark-matter-dominated objects are intriguing due to potentially unusual formation channels that lead to their diffuse stellar component. Given the faintness of LSBGs, using standard observational techniques to characterize their total masses proves challenging. Weak gravitational lensing, which is less sensitive to the stellar component of galaxies, could be a promising avenue to estimate the masses of LSBGs. Our LSBG sample consists of 23,790 galaxies separated into red and blue color types at and , respectively. Combined with the DES Y3 shear catalog, we measure the tangential shear around these LSBGs and find signal-to-noise ratios of 6.67 for the red sample, 2.17 for the blue sample, and 5.30 for the full sample. We use the clustering redshifts method to obtain redshift distributions for the red and blue LSBG samples. Assuming all red LSBGs are satellites, we fit a simple model to the measurements and estimate the host halo mass of these LSBGs to be . We place a 95% upper bound on the subhalo mass at . By contrast, we assume the blue LSBGs are centrals, and place a 95% upper bound on the halo mass at . We find that the stellar-to-halo mass ratio of the LSBG samples is consistent with that of the general galaxy population. This work illustrates the viability of using weak gravitational lensing to constrain the halo masses of LSBGs.more » « less
-
ABSTRACT Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and Planck data, where most of the contamination due to the thermal Sunyaev Zel’dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio = 7.1 and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution (S8 ≡ σ8(Ωm/0.3)0.5 = 0.782 ± 0.059) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6×2pt analysis between DES and ACT.more » « less
-
Beyond the 3rd moment: a practical study of using lensing convergence CDFs for cosmology with DES Y3ABSTRACT Widefield surveys probe clustered scalar fields – such as galaxy counts, lensing potential, etc. – which are sensitive to different cosmological and astrophysical processes. Constraining such processes depends on the statistics that summarize the field. We explore the cumulative distribution function (CDF) as a summary of the galaxy lensing convergence field. Using a suite of N-body light-cone simulations, we show the CDFs’ constraining power is modestly better than the second and third moments, as CDFs approximately capture information from all moments. We study the practical aspects of applying CDFs to data, using the Dark Energy Survey (DES Y3) data as an example, and compute the impact of different systematics on the CDFs. The contributions from the point spread function and reduced shear approximation are $$\lesssim 1~{{\ \rm per\ cent}}$$ of the total signal. Source clustering effects and baryon imprints contribute 1–10 per cent. Enforcing scale cuts to limit systematics-driven biases in parameter constraints degrade these constraints a noticeable amount, and this degradation is similar for the CDFs and the moments. We detect correlations between the observed convergence field and the shape noise field at 13σ. The non-Gaussian correlations in the noise field must be modelled accurately to use the CDFs, or other statistics sensitive to all moments, as a rigorous cosmology tool.more » « less
-
ABSTRACT We present a method for mapping variations between probability distribution functions and apply this method within the context of measuring galaxy redshift distributions from imaging survey data. This method, which we name PITPZ for the probability integral transformations it relies on, uses a difference in curves between distribution functions in an ensemble as a transformation to apply to another distribution function, thus transferring the variation in the ensemble to the latter distribution function. This procedure is broadly applicable to the problem of uncertainty propagation. In the context of redshift distributions, for example, the uncertainty contribution due to certain effects can be studied effectively only in simulations, thus necessitating a transfer of variation measured in simulations to the redshift distributions measured from data. We illustrate the use of PITPZ by using the method to propagate photometric calibration uncertainty to redshift distributions of the Dark Energy Survey Year 3 weak lensing source galaxies. For this test case, we find that PITPZ yields a lensing amplitude uncertainty estimate due to photometric calibration error within 1 per cent of the truth, compared to as much as a 30 per cent underestimate when using traditional methods.more » « less
An official website of the United States government
