skip to main content


Search for: All records

Creators/Authors contains: "Bertoldi, Katia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. The locomotion of soft snake robots is dependent on frictional interactions with the environment. Frictional anisotropy is a morphological characteristic of snakeskin that allows snakes to engage selectively with surfaces and generate propulsive forces. The prototypical slithering gait of most snakes is lateral undulation, which requires a significant lateral resistance that is lacking in artificial skins of existing soft snake robots. We designed a set of kirigami lattices with curvilinearly-arranged cuts to take advantage of in-plane rotations of the 3D structures when wrapped around a soft bending actuator. By changing the initial orientation of the scales, the kirigami skin produces high lateral friction upon engagement with surface asperities, with lateral to cranial anisotropic friction ratios above 4. The proposed design increased the overall velocity of the soft snake robot more than fivefold compared to robots without skin. 
    more » « less
  3. null (Ed.)
    Abstract Nonreciprocity can be passively achieved by harnessing material nonlinearities. In particular, networks of nonlinear bistable elements with asymmetric energy landscapes have recently been shown to support unidirectional transition waves. However, in these systems energy can be transferred only when the elements switch from the higher to the lower energy well, allowing for a one-time signal transmission. Here, we show that in a mechanical metamaterial comprising a 1D array of bistable arches nonreciprocity and reversibility can be independently programmed and are not mutually exclusive. By connecting shallow arches with symmetric energy wells and decreasing energy barriers, we design a reversible mechanical diode that can sustain multiple signal transmissions. Further, by alternating arches with symmetric and asymmetric energy landscapes we realize a nonreciprocal chain that enables propagation of different transition waves in opposite directions. 
    more » « less
  4. Abstract

    Flexible metamaterials have been increasingly harnessed to create functionality through their tunable and unconventional response. Herein, chiral unit cells based on Archimedean spirals are employed to transform a linear displacement into twisting. First, the effect of geometry on such extension‐twisting coupling is investigated. This unravels a wide range of highly nonlinear behaviors that can be programmed. Additionally, it is demonstrated that by combining the spirals with polarizing films one can create mechanical pixels capable of modulating the transmission of light through deformation. Guided by experiments and numerical analyses, pixels are arranged in 2D arrays to realize black and white and color displays, which reveal distinct images at different states of deformation. As such, the study puts forward a methodology for the design of an emerging class of flexible devices that can convert nonlinear elastic deformation to tunable optical transmittance.

     
    more » « less
  5. Abstract

    Programming inflatable systems to deform to desired 3D shapes opens up multifarious applications in robotics, morphing architecture, and interventional medicine. This work elicits complex deformations by attaching discrete strain limiters to cylindrical hyperelastic inflatables. Using this system, a method is presented to solve the inverse problem of programming myriad 3D centerline curves upon inflation. The method entails two steps: first, a reduced‐order model generates a conceptual solution giving coarse indications of strain limiter placement on the undeformed cylindrical inflatable. This low‐fidelity solution then seeds a finite element simulation nested within an optimization loop to further tune strain limiter parameters. We leverage this framework to achieve functionality through a priori programmed deformations of cylindrical inflatables, including 3D curve matching, self‐tying knotting, and manipulation. The results hold broad significance for the emerging computational design of inflatable systems.

     
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    From the discovery of functionally graded laminated composites, to near-structurally optimized diagonally reinforced square lattice structures, the skeletal system of the predominantly deep-sea sponge Euplectella aspergillum has continued to inspire biologists, materials scientists and mechanical engineers. Building on these previous efforts, in the present study, we develop an integrated finite element and fluid dynamics approach for investigating structure–function relationships in the complex maze-like organization of helical ridges that surround the main skeletal tube of this species. From these investigations, we discover that not only do these ridges provide additional mechanical reinforcement, but perhaps more significantly, provide a critical hydrodynamic benefit by effectively suppressing von Kármán vortex shedding and reducing lift forcing fluctuations over a wide range of biologically relevant flow regimes. By comparing the disordered sponge ridge geometry to other more symmetrical strake-based vortex suppression systems commonly employed in infrastructure applications ranging from antennas to underwater gas and oil pipelines, we find that the unique maze-like ridge organization of E. aspergillum can completely suppress vortex shedding rather than delaying their shedding to a more downstream location, thus highlighting their potential benefit in these engineering contexts. 
    more » « less