skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bertoldi, Katia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Knitting interloops one-dimensional yarns into three-dimensional fabrics that exhibit behaviour beyond their constitutive materials. How extensibility and anisotropy emerge from the hierarchical organization of yarns into knitted fabrics has long been unresolved. We seek to unravel the mechanical roles of tensile mechanics, assembly and dynamics arising from the yarn level on fabric nonlinearity by developing a yarn-based dynamical model. This physically validated model captures the mechanical response of knitted fabrics, analogous to flexible metamaterials and biological fibre networks due to geometric nonlinearity within such hierarchical systems. Fabric anisotropy originates from observed yarn–yarn rearrangements during alignment dynamics and is topology-dependent. This yarn-based model also provides a design space of knitted fabrics to embed functionalities by varying geometric configuration and material property in instructed procedures compatible to machine manufacturing. Our hierarchical approach to build up a knitted fabric computationally modernizes an ancient craft and represents a first step towards mechanical programmability of knitted fabrics in wide engineering applications. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  2. Free, publicly-accessible full text available September 24, 2025
  3. The pursuit of materials with enhanced functionality has led to the emergence of metamaterials—artificially engineered materials whose properties are determined by their structure rather than composition. Traditionally, the building blocks of metamaterials are arranged in fixed positions within a lattice structure. However, recent research has revealed the potential of mixing disconnected building blocks in a fluidic medium. Inspired by these recent advances, here we show that by mixing highly deformable spherical capsules into an incompressible fluid, we can realize a ‘metafluid’ with programmable compressibility, optical behaviour and viscosity. First, we experimentally and numerically demonstrate that the buckling of the shells endows the fluid with a highly nonlinear behaviour. Subsequently, we harness this behaviour to develop smart robotic systems, highly tunable logic gates and optical elements with switchable characteristics. Finally, we demonstrate that the collapse of the shells upon buckling leads to a large increase in the suspension viscosity in the laminar regime. As such, the proposed metafluid provides a promising platform for enhancing the functionality of existing fluidic devices by expanding the capabilities of the fluid itself. 
    more » « less
  4. In this Letter, we investigate the propagation of nonlinear pulses along the free surface of flexible metamaterials based on the rotating squares mechanism. While these metamaterials have previously been shown to support the propagation of elastic vector solitons through their bulk, here, we demonstrate that they can also support the stable propagation of nonlinear pulses along their free surface. Furthermore, we show that the stability of these surface pulses is higher when they minimally interact with the linear dispersive surface modes. Finally, we provide guidelines to select geometries that minimize these interactions. 
    more » « less
  5. Electronic devicesforrecording neuralactivityinthe nervoussyste m needto bescalableacrosslargespatialandte mporalscales whilealso providing millisecondandsingle-cellspatiote mporalresolution. H o w e v e r, e xi s ti n g hi g h- r e s ol u ti o n n e u r al r e c o r di n g d e vi c e s c a n n o t achievesi multaneousscalability on bothspatialandte mporallevels due toatrade-offbetweensensordensityand mechanicalflexibility. Here weintroduceathree-di mensional(3D)stackingi mplantableelectronic platfor m,basedonperfluorinateddielectricelasto mersandtissue-levelsoft multilayerelectrodes,thatenablesspatiote mporallyscalablesingle-cell neuralelectrophysiologyinthenervoussyste m. Ourelasto mersexhibit stable dielectric perfor mancefor overayearin physiologicalsolutions andare10,000ti messofterthanconventional plastic dielectrics. By leveragingthese uniquecharacteristics we developthe packaging of lithographednano metre-thickelectrodearraysina3Dconfiguration with across-sectionaldensityof7.6electrodesper100μ m2.Theresulting3D integrated multilayersoftelectrodearrayretainstissue-levelflexibility, reducingchronici m muneresponsesin mouse neuraltissues,and de monstratestheabilitytoreliablytrackelectricalactivityinthe mouse brain orspinalcord over months without disruptingani mal behaviour. 
    more » « less
  6. We introduce a class of ultra-light and ultra-stiff sandwich panels designed for use in photophoretic levitation applications and investigate their mechanical behavior using both computational analyses and micro-mechanical testing. The sandwich panels consist of two face sheets connected with a core that consists of hollow cylindrical ligaments arranged in a honeycomb-based hexagonal pattern. Computational modeling shows that the panels have superior bending stiffness and buckling resistance compared to similar panels with a basketweave core, and that their behavior is well described by Uflyand-Mindlin plate theory. By optimizing the ratio of the face sheet thickness to the ligament wall thickness, panels maybe obtained that have a bending stiffness that is more than five orders of magnitude larger than that of a solid plate with the same area density. Using a scalable microfabrication process, we demonstrate that panels as large as 3 × 3 cm2 with a volumetric density of 20 kg/m3 and corresponding area density of 2 g/m2 can be made in a few hours. Micro-mechanical testing of the panels is performed by deflecting microfabricated cantilevered panels using a nanoindenter. The experimentally measured bending stiffness of the cantilevered panels is in very good agreement with the computational results, demonstrating exquisite control over the dimensions, form, and properties of the microfabricated panels. 
    more » « less
  7. The locomotion of soft snake robots is dependent on frictional interactions with the environment. Frictional anisotropy is a morphological characteristic of snakeskin that allows snakes to engage selectively with surfaces and generate propulsive forces. The prototypical slithering gait of most snakes is lateral undulation, which requires a significant lateral resistance that is lacking in artificial skins of existing soft snake robots. We designed a set of kirigami lattices with curvilinearly-arranged cuts to take advantage of in-plane rotations of the 3D structures when wrapped around a soft bending actuator. By changing the initial orientation of the scales, the kirigami skin produces high lateral friction upon engagement with surface asperities, with lateral to cranial anisotropic friction ratios above 4. The proposed design increased the overall velocity of the soft snake robot more than fivefold compared to robots without skin. 
    more » « less
  8. null (Ed.)
    Abstract Nonreciprocity can be passively achieved by harnessing material nonlinearities. In particular, networks of nonlinear bistable elements with asymmetric energy landscapes have recently been shown to support unidirectional transition waves. However, in these systems energy can be transferred only when the elements switch from the higher to the lower energy well, allowing for a one-time signal transmission. Here, we show that in a mechanical metamaterial comprising a 1D array of bistable arches nonreciprocity and reversibility can be independently programmed and are not mutually exclusive. By connecting shallow arches with symmetric energy wells and decreasing energy barriers, we design a reversible mechanical diode that can sustain multiple signal transmissions. Further, by alternating arches with symmetric and asymmetric energy landscapes we realize a nonreciprocal chain that enables propagation of different transition waves in opposite directions. 
    more » « less