skip to main content

Search for: All records

Creators/Authors contains: "Beyer, Johanna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Trust is an essential aspect of data visualization, as it plays a crucial role in the interpretation and decision-making processes of users. While research in social sciences outlines the multi-dimensional factors that can play a role in trust formation, most data visualization trust researchers employ a single-item scale to measure trust. We address this gap by proposing a comprehensive, multidimensional conceptualization and operationalization of trust in visualization. We do this by applying general theories of trust from social sciences, as well as synthesizing and extending earlier work and factors identified by studies in the visualization field. We apply a two-dimensional approach to trust in visualization, to distinguish between cognitive and affective elements, as well as between visualization and data-specific trust antecedents. We use our framework to design and run a large crowd-sourced study to quantify the role of visual complexity in establishing trust in science visualizations. Our study provides empirical evidence for several aspects of our proposed theoretical framework, most notably the impact of cognition, affective responses, and individual differences when establishing trust in visualizations. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available January 1, 2025
  3. We present iBall, a basketball video-watching system that leverages gaze-moderated embedded visualizations to facilitate game understanding and engagement of casual fans. Video broadcasting and online video platforms make watching basketball games increasingly accessible. Yet, for new or casual fans, watching basketball videos is often confusing due to their limited basketball knowledge and the lack of accessible, on-demand information to resolve their confusion. To assist casual fans in watching basketball videos, we compared the game-watching behaviors of casual and die-hard fans in a formative study and developed iBall based on the findings. iBall embeds visualizations into basketball videos using a computer vision pipeline, and automatically adapts the visualizations based on the game context and users’ gaze, helping casual fans appreciate basketball games without being overwhelmed. We confirmed the usefulness, usability, and engagement of iBall in a study with 16 casual fans, and further collected feedback from another 8 die-hard fans. 
    more » « less
  4. Abstract

    High‐resolution electron microscopy imaging allows neuroscientists to reconstruct not just entire cells but individual cell substructures (i.e., cell organelles) as well. Based on these data, scientists hope to get a better understanding of brain function and development through detailed analysis of local organelle neighborhoods. In‐depth analyses require efficient and scalable comparison of a varying number of cell organelles, ranging from two to hundreds of local spatial neighborhoods. Scientists need to be able to analyze the 3D morphologies of organelles, their spatial distributions and distances, and their spatial correlations. We have designed Barrio as a configurable framework that scientists can adjust to their preferred workflow, visualizations, and supported user interactions for their specific tasks and domain questions. Furthermore, Barrio provides a scalable comparative visualization approach for spatial neighborhoods that automatically adjusts visualizations based on the number of structures to be compared. Barrio supports small multiples of spatial 3D views as well as abstract quantitative views, and arranges them in linked and juxtaposed views. To adapt to new domain‐specific analysis scenarios, we allow the definition of individualized visualizations and their parameters for each analysis session. We present an in‐depth case study for mitochondria analysis in neuronal tissue and demonstrate the usefulness of Barrio in a qualitative user study with neuroscientists.

    more » « less
  5. Three-dimensional (3D) reconstruction of living brain tissue down to an individual synapse level would create opportunities for decoding the dynamics and structure–function relationships of the brain’s complex and dense information processing network; however, this has been hindered by insufficient 3D resolution, inadequate signal-to-noise ratio and prohibitive light burden in optical imaging, whereas electron microscopy is inherently static. Here we solved these challenges by developing an integrated optical/machine-learning technology, LIONESS (live information-optimized nanoscopy enabling saturated segmentation). This leverages optical modifications to stimulated emission depletion microscopy in comprehensively, extracellularly labeled tissue and previous information on sample structure via machine learning to simultaneously achieve isotropic super-resolution, high signal-to-noise ratio and compatibility with living tissue. This allows dense deep-learning-based instance segmentation and 3D reconstruction at a synapse level, incorporating molecular, activity and morphodynamic information. LIONESS opens up avenues for studying the dynamic functional (nano-)architecture of living brain tissue. 
    more » « less
  6. null (Ed.)
    Table2Text systems generate textual output based on structured data utilizing machine learning. These systems are essential for fluent natural language interfaces in tools such as virtual assistants; however, left to generate freely these ML systems often produce misleading or unexpected outputs. GenNI (Generation Negotiation Interface) is an interactive visual system for high-level human-AI collaboration in producing descriptive text. The tool utilizes a deep learning model designed with explicit control states. These controls allow users to globally constrain model generations, without sacrificing the representation power of the deep learning models. The visual interface makes it possible for users to interact with AI systems following a Refine-Forecast paradigm to ensure that the generation system acts in a manner human users find suitable. We report multiple use cases on two experiments that improve over uncontrolled generation approaches, while at the same time providing fine-grained control. A demo and source code are available at 
    more » « less
  7. Abstract

    The field of connectomics aims to reconstruct the wiring diagram of Neurons and synapses to enable new insights into the workings of the brain. Reconstructing and analyzing the Neuronal connectivity, however, relies on many individual steps, starting from high‐resolution data acquisition to automated segmentation, proofreading, interactive data exploration, and circuit analysis. All of these steps have to handle large and complex datasets and rely on or benefit from integrated visualization methods. In this state‐of‐the‐art report, we describe visualization methods that can be applied throughout the connectomics pipeline, from data acquisition to circuit analysis. We first define the different steps of the pipeline and focus on how visualization is currently integrated into these steps. We also survey open science initiatives in connectomics, including usable open‐source tools and publicly available datasets. Finally, we discuss open challenges and possible future directions of this exciting research field.

    more » « less