In the realm of neuroscience, mapping the three-dimensional (3D) neural circuitry and architecture of the brain is important for advancing our understanding of neural circuit organization and function. This study presents a novel pipeline that transforms mouse brain samples into detailed 3D brain models using a collaborative data analytics platform called “Texera.” The user-friendly Texera platform allows for effective interdisciplinary collaboration between team members in neuroscience, computer vision, and data processing. Our pipeline utilizes the tile images from a serial two-photon tomography/TissueCyte system, then stitches tile images into brain section images, and constructs 3D whole-brain image datasets. The resulting 3D data supports downstream analyses, including 3D whole-brain registration, atlas-based segmentation, cell counting, and high-resolution volumetric visualization. Using this platform, we implemented specialized optimization methods and obtained significant performance enhancement in workflow operations. We expect the neuroscience community can adopt our approach for large-scale image-based data processing and analysis.
The field of connectomics aims to reconstruct the wiring diagram of Neurons and synapses to enable new insights into the workings of the brain. Reconstructing and analyzing the Neuronal connectivity, however, relies on many individual steps, starting from high‐resolution data acquisition to automated segmentation, proofreading, interactive data exploration, and circuit analysis. All of these steps have to handle large and complex datasets and rely on or benefit from integrated visualization methods. In this state‐of‐the‐art report, we describe visualization methods that can be applied throughout the connectomics pipeline, from data acquisition to circuit analysis. We first define the different steps of the pipeline and focus on how visualization is currently integrated into these steps. We also survey open science initiatives in connectomics, including usable open‐source tools and publicly available datasets. Finally, we discuss open challenges and possible future directions of this exciting research field.
more » « less- NSF-PAR ID:
- 10406071
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Computer Graphics Forum
- Volume:
- 41
- Issue:
- 3
- ISSN:
- 0167-7055
- Format(s):
- Medium: X Size: p. 573-607
- Size(s):
- p. 573-607
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
McHenry, K ; Schreiber, L (Ed.)The paleogeosciences are becoming more and more interdisciplinary, and studies increasingly rely on large collections of data derived from multiple data repositories. Integrating diverse datasets from multiple sources into complex workflows increases the challenge of creating reproducible and open science, as data formats and tools are often noninteroperable, requiring manual manipulation of data into standardized formats, resulting in a disconnect in data provenance and confounding reproducibility. Here we present a notebook that demonstrates how the Linked PaleoData (LiPD) framework is used as an interchange format to allow data from multiple data sources to be integrated in a complex workflow using emerging packages in R for geochronological uncertainty quantification and abrupt change detection. Specifically, in this notebook, we use the neotoma2 and lipdR packages to access paleoecological data from the Neotoma Database, and paleoclimate data from compilations hosted on Lipdverse. Age uncertainties for datasets from both sources are then quantified using the geoChronR package, and those data, and their associated age uncertainties, are then investigated for abrupt changes using the actR package, with accompanying visualizations. The result is an integrated, reproducible workflow in R that demonstrates how this complex series of multisource data integration, analysis and visualization can be integrated into an efficient, open scientific narrative.more » « less
-
Abstract How do we ensure the veracity of science? The act of manipulating or fabricating scientific data has led to many high‐profile fraud cases and retractions. Detecting manipulated data, however, is a challenging and time‐consuming endeavor. Automated detection methods are limited due to the diversity of data types and manipulation techniques. Furthermore, patterns automatically flagged as suspicious can have reasonable explanations. Instead, we propose a nuanced approach where experts analyze tabular datasets, e.g., as part of the peer‐review process, using a guided, interactive visualization approach. In this paper, we present an analysis of how manipulated datasets are created and the artifacts these techniques generate. Based on these findings, we propose a suite of visualization methods to surface potential irregularities. We have implemented these methods in Ferret, a visualization tool for data forensics work. Ferret makes potential data issues salient and provides guidance on spotting signs of tampering and differentiating them from truthful data.
-
Abstract Summary Understanding the spread and evolution of pathogens is important for effective public health measures and surveillance. Nextstrain consists of a database of viral genomes, a bioinformatics pipeline for phylodynamics analysis, and an interactive visualization platform. Together these present a real-time view into the evolution and spread of a range of viral pathogens of high public health importance. The visualization integrates sequence data with other data types such as geographic information, serology, or host species. Nextstrain compiles our current understanding into a single accessible location, open to health professionals, epidemiologists, virologists and the public alike.
Availability and implementation All code (predominantly JavaScript and Python) is freely available from github.com/nextstrain and the web-application is available at nextstrain.org.
-
Abstract Comprehensive and accurate analysis of respiratory and metabolic data is crucial to modelling congenital, pathogenic and degenerative diseases converging on autonomic control failure. A lack of tools for high‐throughput analysis of respiratory datasets remains a major challenge. We present Breathe Easy, a novel open‐source pipeline for processing raw recordings and associated metadata into operative outcomes, publication‐worthy graphs and robust statistical analyses including QQ and residual plots for assumption queries and data transformations. This pipeline uses a facile graphical user interface for uploading data files, setting waveform feature thresholds and defining experimental variables. Breathe Easy was validated against manual selection by experts, which represents the current standard in the field. We demonstrate Breathe Easy's utility by examining a 2‐year longitudinal study of an Alzheimer's disease mouse model to assess contributions of forebrain pathology in disordered breathing. Whole body plethysmography has become an important experimental outcome measure for a variety of diseases with primary and secondary respiratory indications. Respiratory dysfunction, while not an initial symptom in many of these disorders, often drives disability or death in patient outcomes. Breathe Easy provides an open‐source respiratory analysis tool for all respiratory datasets and represents a necessary improvement upon current analytical methods in the field.
image Key points Respiratory dysfunction is a common endpoint for disability and mortality in many disorders throughout life.
Whole body plethysmography in rodents represents a high face‐value method for measuring respiratory outcomes in rodent models of these diseases and disorders.
Analysis of key respiratory variables remains hindered by manual annotation and analysis that leads to low throughput results that often exclude a majority of the recorded data.
Here we present a software suite, Breathe Easy, that automates the process of data selection from raw recordings derived from plethysmography experiments and the analysis of these data into operative outcomes and publication‐worthy graphs with statistics.
We validate Breathe Easy with a terabyte‐scale Alzheimer's dataset that examines the effects of forebrain pathology on respiratory function over 2 years of degeneration.