skip to main content


Search for: All records

Creators/Authors contains: "Bierbach, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Behavioral individuality is a ubiquitous phenomenon in animal populations, yet the origins and developmental trajectories of individuality, especially very early in life, are still a black box. Using a high-resolution tracking system, we mapped the behavioral trajectories of genetically identical fish (Poecilia formosa), separated immediately after birth into identical environments, over the first 10 weeks of their life at 3 s resolution. We find that (i) strong behavioral individuality is present at the very first day after birth, (ii) behavioral differences at day 1 of life predict behavior up to at least 10 weeks later, and (iii) patterns of individuality strengthen gradually over developmental time. Our results establish a null model for how behavioral individuality can develop in the absence of genetic and environmental variation and provide experimental evidence that later-in-life individuality can be strongly shaped by factors pre-dating birth like maternal provisioning, epigenetics and pre-birth developmental stochasticity.

     
    more » « less
  2. Understanding how individual differences arise and how their effects propagate through groups are fundamental issues in biology. Individual differences can arise from indirect genetic effects (IGE): genetically based variation in the conspecifics with which an individual interacts. Using a clonal species, the Amazon molly ( Poecilia formosa ), we test the hypothesis that IGE can propagate to influence phenotypes of the individuals that do not experience them firsthand. We tested this by exposing genetically identical Amazon mollies to conspecific social partners of different clonal lineages, and then moving these focal individuals to new social groups in which they were the only member to have experienced the IGE. We found that genetically different social environments resulted in the focal animals experiencing different levels of aggression, and that these IGE carried over into new social groups to influence the behaviour of naive individuals. These data reveal that IGE can cascade beyond the individuals that experience them. Opportunity for cascading IGE is ubiquitous, especially in species with long-distance dispersal or fission–fusion group dynamics. Cascades could amplify (or mitigate) the effects of IGE on trait variation and on evolutionary trajectories. Expansion of the IGE framework to include cascading and other types of carry-over effects will therefore improve understanding of individual variation and social evolution and allow more accurate prediction of population response to changing environments. 
    more » « less