skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Binder, Felix"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. How do people perform general-purpose physical reasoning across a variety of scenarios in everyday life? Across two stud ies with seven different physical scenarios, we asked participants to predict whether or where two objects will make contact. People achieved high accuracy and were highly consistent with each other in their predictions. We hypothesize that this robust generalization is a consequence of mental simulations of noisy physics. We designed an “intuitive physics engine” model to capture this generalizable simulation. We find that this model generalized in human-like ways to unseen stimuli and to a different query of predictions. We evaluated several state-of-the-art deep learning and scene feature models on the same task and found that they could not explain human predictions as well. This study provides evidence that human’s robust generalization in physics predictions are supported by a probabilistic simulation model, and suggests the need for structure in learned dynamics models. 
    more » « less
    Free, publicly-accessible full text available July 24, 2025