Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 27, 2026
-
Subgrade treatment has traditionally been achieved using calcium-based cement. However, it does not necessarily enhance sustainable design. Recently, low-carbon alternatives such as portland limestone cement (PLC) have gained attention as substitutes for traditional cement. In addition, recycled concrete aggregate fines (fRCA), a waste product, have shown potential for application in transportation infrastructure because of their enhancements in pavements. This study investigates the effectiveness of PLC and fRCA in improving soil properties under different environmental stressors. Clayey soil was treated with PLC (10% PLC or 10C) and PLC-fRCA mixtures at different ratios (8% PLC/15% fRCA or 8C_15fRCA and 8% PLC/30% fRCA or 8C_30fRCA). Improvements in strength, stiffness, and volumetric changes were evaluated through unconfined compressive strength and repeated load triaxial tests after exposure to various environmental conditioning cycles (0, 6, and 12 cycles of wet–dry or freeze–thaw) in the laboratory. Results indicated that untreated soil collapsed within two cycles of environmental conditioning. In contrast, treated soils exhibited significant improvements in strength and resilience to environmental stressors. Stiffness also improved with treatment, and despite some reduction after exposure to environmental conditioning, treated specimens maintained relatively higher stiffness values. These enhancements are attributed to the formation of strong binding gels from hydration and secondary reactions among PLC, fRCA, and soil, which exhibit strong resistance to moisture intrusion, helping to preserve their engineering properties. Overall, this study provides a comprehensive understanding of the potential of using fRCA as a co-additive to PLC, offering a more sustainable and durable alternative for the long-term performance of transportation infrastructures.more » « lessFree, publicly-accessible full text available October 6, 2026
-
The long-term monitoring of transportation infrastructure assets at a lower cost and with short mobilization time is of significant interest to both state and federal transportation agencies in the U.S. Because of the significant improvement in spatial and temporal resolution of synthetic aperture radar (SAR) remote sensing systems and a notable reduction in the cost of data acquisition, SAR has now become a viable method to provide economic and rapid condition assessment of transportation assets. A research study was developed and performed to comprehensively perform the inspection and characterization of a pavement surface based on the amplitude of backscattering of an X-band radar. In situ characterization of the test site was first performed using traditional inertial profilers and aerial photogrammetry with unmanned aerial vehicle (UAV) surveys. The results from these in situ methods were compared with the corrected amplitude of the SAR data, which indicated that the distribution of surface roughness values computed from the inertial profiler, UAV, and SAR exhibited similar probability densities at various segmental lengths considered in this study. This suggested that the problematic areas that are evident during in situ characterization can be delineated and quantified based on the normalized radar cross section of the pavement surface. Overall, the outcome of this research exhibits the potential of SAR for future transportation asset management undertakings, and the systematic framework developed as a part of this research could be of significant interest to engineers and transportation practitioners.more » « less
-
Stabilization of sulfate-rich expansive subgrade soils is a persistent cause of concern for transportation infrastructure engineers and practitioners. The application of traditional calcium-based stabilizers is generally not recommended for treating such soils because of the formation of deleterious reaction products such as ettringite. Sulfate-induced heaving causes severe structural damage to pavements and accounts for enormous expenditure from routine maintenance and rehabilitation activities. A research study was undertaken to evaluate the feasibility of using a metakaolin-based geopolymer (GP) for the treatment of sulfate-rich expansive soil. Laboratory studies were conducted on natural soil and artificially sulfate-rich soils, when treated with either lime or GP, to evaluate and compare the improvements in the engineering properties, including unconfined compressive strength, swelling and shrinkage, and resilient moduli characteristics over different curing periods. Microstructural studies, such as field emission scanning electron microscopy and X-ray diffraction, were performed on treated soils to detect the formation of reaction products. The engineering studies indicate that GP treatment enhanced strength and resilient moduli while suppressing ettringite formation and the associated swell–shrink potential of the treated soils. The microstructural studies showed that GP gels contribute to the improvement of these engineering properties through the formation of a uniform geopolymer matrix. In addition, the absence of a calcium source suppressed the formation of ettringite in the GP-treated soils. Overall, the findings indicate that GPs could be used as a potential alternative to existing traditional stabilizers for treating sulfate-rich expansive soils.more » « less
An official website of the United States government
