skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bittremieux, Wout"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 4, 2025
  2. Abstract A fundamental challenge in mass spectrometry-based proteomics is the identification of the peptide that generated each acquired tandem mass spectrum. Approaches that leverage known peptide sequence databases cannot detect unexpected peptides and can be impractical or impossible to apply in some settings. Thus, the ability to assign peptide sequences to tandem mass spectra without prior information—de novo peptide sequencing—is valuable for tasks including antibody sequencing, immunopeptidomics, and metaproteomics. Although many methods have been developed to address this problem, it remains an outstanding challenge in part due to the difficulty of modeling the irregular data structure of tandem mass spectra. Here, we describe Casanovo, a machine learning model that uses a transformer neural network architecture to translate the sequence of peaks in a tandem mass spectrum into the sequence of amino acids that comprise the generating peptide. We train a Casanovo model from 30 million labeled spectra and demonstrate that the model outperforms several state-of-the-art methods on a cross-species benchmark dataset. We also develop a version of Casanovo that is fine-tuned for non-enzymatic peptides. Finally, we demonstrate that Casanovo’s superior performance improves the analysis of immunopeptidomics and metaproteomics experiments and allows us to delve deeper into the dark proteome. 
    more » « less
  3. Free, publicly-accessible full text available December 15, 2025
  4. Abstract MotivationDriven by technological advances, the throughput and cost of mass spectrometry (MS) proteomics experiments have improved by orders of magnitude in recent decades. Spectral library searching is a common approach to annotating experimental mass spectra by matching them against large libraries of reference spectra corresponding to known peptides. An important disadvantage, however, is that only peptides included in the spectral library can be found, whereas novel peptides, such as those with unexpected post-translational modifications (PTMs), will remain unknown. Open modification searching (OMS) is an increasingly popular approach to annotate modified peptides based on partial matches against their unmodified counterparts. Unfortunately, this leads to very large search spaces and excessive runtimes, which is especially problematic considering the continuously increasing sizes of MS proteomics datasets. ResultsWe propose an OMS algorithm, called HOMS-TC, that fully exploits parallelism in the entire pipeline of spectral library searching. We designed a new highly parallel encoding method based on the principle of hyperdimensional computing to encode mass spectral data to hypervectors while minimizing information loss. This process can be easily parallelized since each dimension is calculated independently. HOMS-TC processes two stages of existing cascade search in parallel and selects the most similar spectra while considering PTMs. We accelerate HOMS-TC on NVIDIA’s tensor core units, which is emerging and readily available in the recent graphics processing unit (GPU). Our evaluation shows that HOMS-TC is 31× faster on average than alternative search engines and provides comparable accuracy to competing search tools. Availability and implementationHOMS-TC is freely available under the Apache 2.0 license as an open-source software project at https://github.com/tycheyoung/homs-tc. 
    more » « less
  5. Background: Spectral library searching is currently the most common approach for compound annotation in untargeted metabolomics. Spectral libraries applicable to liquid chromatography mass spectrometry have grown in size over the past decade to include hundreds of thousands to millions of mass spectra and tens of thousands of compounds, forming an essential knowledge base for the interpretation of metabolomics experiments. Aim of Review: We describe existing spectral library resources, highlight different strategies for compiling spectral libraries, and discuss quality considerations that should be taken into account when interpreting spectral library searching results. Finally, we describe how spectral libraries are empowering the next generation of machine learning tools in computational metabolomics, and discuss several opportunities for using increasingly accessible large spectral libraries. Key Scientific Concepts of Review: This review focuses on the current state of spectral libraries for untargeted LC-MS/MS based metabolomics. We show how the number of entries in publicly accessible spectral libraries has increased more than 60-fold in the past eight years to aid molecular interpretation and we discuss how the role of spectral libraries in untargeted metabolomics will evolve in the near future. 
    more » « less
  6. Free, publicly-accessible full text available May 12, 2026
  7. ABSTRACT Protein tandem mass spectrometry data are most often interpreted by matching observed mass spectra to a protein database derived from the reference genome of the sample being analyzed. In many application domains, however, a relevant protein database is unavailable or incomplete, and in such settings de novo sequencing is required. Since the introduction of the DeepNovo algorithm in 2017, the field of de novo sequencing has been dominated by deep learning methods, which use large amounts of labeled mass spectrometry data to train multi‐layer neural networks to translate from observed mass spectra to corresponding peptide sequences. Here, we describe these deep learning methods, outline procedures for evaluating their performance, and discuss the challenges in the field, both in terms of methods development and evaluation protocols. 
    more » « less