skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biver, N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Isotopic measurements of Solar System bodies provide a primary paradigm within which to understand the origins and histories of planetary materials. The deuterium-to-hydrogen (D/H) ratio, in particular, helps reveal the relationship between (and heritage of) di erent H2O reservoirs within the Solar System. Here we present interferometric maps of water (H2O) and semiheavy water (HDO) in the gas-phase coma of a comet (Halley-type comet 12P/Pons–Brooks), obtained using the Atacama Large Millimeter/ submillimeter Array. The maps are consistent with outgassing of both H2O and HDO directly from the nucleus, and they imply a coma D/H ratio (for water) of (1.71 ± 0.44) × 10−4. This is at the lower end of the range of previously observed values in comets and is consistent with D/H in Earth’s ocean water. Our results indicate a possible common heritage between a component of the water ice reservoir in the Oort cloud and the water that was delivered to the young Earth during the early history of the Solar System 
    more » « less
    Free, publicly-accessible full text available August 8, 2026
  2. Abstract 46P/Wirtanen is a Jupiter-family comet, probably originating from the solar system’s Kuiper Belt, that now resides on a 5.4 yr elliptical orbit. During its 2018 apparition, comet 46P passed unusually close to the Earth (within 0.08 au), presenting an outstanding opportunity for close-up observations of its inner coma. Here we present observations of HCN, H13CN, and HC15N emission from 46P using the Atacama Compact Array. The data were analyzed using the SUBLIME non-LTE radiative transfer code to derive12C/13C and14N/15N ratios. The HCN/H13CN ratio is found to be consistent with a lack of significant13C fractionation, whereas the HCN/HC15N ratio of 68 ± 27 (using our most conservative 1σuncertainties), indicates a strong enhancement in15N compared with the solar and terrestrial values. The observed14N/15N ratio is also significantly lower than the values of ∼140 found in previous comets, implying a strong15N enrichment in 46P’s HCN. This indicates that the nitrogen in Jupiter-family comets could reach larger isotopic enrichments than previously thought, with implications for the diversity of14N/15N ratios imprinted into icy bodies at the birth of the solar system. 
    more » « less
  3. We present the results of a molecular survey of long period comets C/2021 A1 (Leonard) and C/2022 E3 (ZTF). Comet C/2021 A1 was observed with the Institut de radioastronomie millimétrique (IRAM) 30-m radio telescope in November-December 2021 before perihelion (heliocentric distance 1.22 to 0.76 au) when it was closest to the Earth (≈0.24 au). We observed C/2022 E3 in January-February 2023 with theOdin1-m space telescope and IRAM 30-m, shortly after its perihelion at 1.11 au from the Sun, and when it was closest to the Earth (≈0.30 au). Snapshots were obtained during 12–16 November 2021 period for comet C/2021 A1. Spectral surveys were undertaken over the 8–13 December 2021 period for comet C/2021 A1 (8 GHz bandwidth at 3 mm, 16 GHz at 2 mm, and 61 GHz in the 1 mm window) and over the 3–7 February 2023 period for comet C/2022 E3 (25 GHz at 2 mm and 61 GHz at 1 mm). We report detections of 14 molecular species (HCN, HNC, CH3CN, HNCO, NH2CHO, CH3OH, H2CO, HCOOH, CH3CHO, H2S, CS, OCS, C2H5OH and aGg’-(CH2OH)2) in both comets. In addition, HC3N, and CH2OHCHO were marginally detected in C/2021 A1, and CO and H2O (withOdin) were detected in C/2022 E3. The spatial distribution of several species (HCN, HNC, CS, H2CO, HNCO, HCOOH, NH2CHO, and CH3CHO) is investigated. Significant upper limits on the abundances of other molecules and isotopic ratios are also presented. The activity of comet C/2021 A1 did not vary significantly between 13 November and 13 December 2021, when observations stopped, just before it started to exhibit major outbursts seen in the visible and from observations of the OH radical. Short-term variability in the outgassing of comet C/2022 E3 of the order of ±20% is present and possibly linked to its 8h rotation period. Both comets exhibit rather low abundances relative to water for volatile species such as CO (<2%) and H2S (0.15%). Methanol is also rather depleted in comet C/2021 A1 (0.9%). Following their revised photo-destruction rates, HNCO and HCOOH abundances in comets observed at millimetre wavelengths have been reevaluated. Both molecules are relatively enriched in these two comets (~0.2% relative to water). Since the combined abundance of these two acids (0.1–1%) is close to that of ammonia in comets, we cannot exclude that these species could be produced by the dissociation of ammonium formate and ammonium cyanate if present in comets. 
    more » « less
  4. We present the results of millimetre-wave spectroscopic and continuum observations of the comet C/2020 F3 (NEOWISE) undertaken with the Institut de RadioAstronomie Millimétrique (IRAM) 30-m and the NOrthern Extended Millimeter Array (NOEMA) telescopes on 22, 25–27 July, and 7 August 2020. Production rates of HCN, HNC, CH 3 OH CS, H 2 CO, CH 3 CN, H 2 S, and CO were determined with upper limits on six other species. The comet shows abundances within the range observed for other comets. The CO abundance is low (3.2% relative to water), while H 2 S is relatively abundant (1.1% relative to water). The H 2 CO abundance shows a steep variation with heliocentric distance, possibly related to a distributed production from the dust or macro-molecular source. The CH 3 OH and H 2 S production rates show a slower decrease post-perihelion than water. There was no detection of the nucleus point source contribution based on the interferometric map of the continuum (implying a size of r < 4.7 km), but this yielded an estimate of the dust production rate, leading to a relatively low dust-to-gas ratio of 0.7 ± 0.3 on 22.4 July 2020. 
    more » « less
  5. We present the results of a molecular survey of comet 67P/Churyumov-Gerasimenko undertaken with the Institut de RadioAstronomie Millimétrique (IRAM) 30-m radio telescope in November–December 2021, when it had its most favourable apparition in decades. Observations at IRAM 30-m during the 12–16 November period covered 8 GHz bandwidth at 3 mm, 16 GHz at 2 mm, and 60 GHz in the 1 mm window domain. These were completed by snapshots at 1 mm on 12–13 December and a short observation of the H 2 O line at 557 GHz with the Odin sub-millimetre observatory on 17.0 November 2021, and with 18-cm observations of OH with the Nançay radio telescope. Less sensitive observations obtained at a previous perihelion passage on 18–22 September 2015 with IRAM and 9–12 November 2015 with Odin are also presented. The gas outflow velocity, outgassing pattern, and temperature have been accurately constrained by the observations. They are perfectly consistent with those measured in situ with the Rosetta/MIRO sub-millimetre instrument in 2015. In particular, the asymmetry of the line is well represented by a jet concentrating three-quarters of the outgassing in about π steradians. We derived abundances relative to water for seven molecules and significant upper limits for approximately five others. The retrieved abundances were compared to those measured in situ at the previous perihelion with Rosetta. While those of HCN, CH 3 OH, and HNCO are comparable, 67P is found to be depleted in H 2 S and relatively normal in CS (H 2 S/CS ≈ 3) in strong contradiction with the Rosetta/ROSINA mass spectrometer measurement of the H 2 S/CS 2 (≈100) abundance ratio. While the formaldehyde total abundance found with IRAM 30-m when assuming it to be mostly produced by a distributed source (Haser parent scale length ≈8000 km) is similar to the one derived by Rosetta/ROSINA, we find that the formaldehyde coming from the nucleus is one order of magnitude less abundant than measured in situ by Rosetta/ROSINA. 
    more » « less
  6. Abstract Gas-phase molecules in cometary atmospheres (comae) originate primarily from (1) outgassing by the nucleus, (2) sublimation of icy grains in the near-nucleus coma, and (3) coma (photo)chemical processes. However, the majority of cometary gases observed at radio wavelengths have yet to be mapped, so their production/release mechanisms remain uncertain. Here we present observations of six molecular species toward comet 46P/Wirtanen, obtained using the Atacama Large Millimeter/submillimeter Array during the comet’s unusually close (∼0.1 au) approach to Earth in 2018 December. Interferometric maps of HCN, CH3OH, CH3CN, H2CO, CS, and HNC were obtained at an unprecedented sky-projected spatial resolution of up to 25 km, enabling the nucleus and coma sources of these molecules to be accurately quantified. The HCN, CH3OH, and CH3CN spatial distributions are consistent with production by direct outgassing from (or very close to) the nucleus, with a significant proportion of the observed CH3OH originating from sublimation of icy grains in the near-nucleus coma (at a scale lengthLp= 36 ± 7 km). On the other hand, H2CO, CS, and HNC originate primarily from distributed coma sources (withLpvalues in the range 550–16,000 km), the identities of which remain to be established. The HCN, CH3OH, and HNC abundances in 46P are consistent with the average values previously observed in comets, whereas the H2CO, CH3CN, and CS abundances are relatively low. 
    more » « less
  7. null (Ed.)
    We present the results of a molecular survey of comet 46P/Wirtanen undertaken with the IRAM 30-m and NOEMA radio telescopes in December 2018. Observations at IRAM 30-m during the 12–18 December period comprise a 2 mm spectral survey covering 25 GHz and a 1 mm survey covering 62 GHz. The gas outflow velocity and kinetic temperature have been accurately constrained by the observations. We derive abundances of 11 molecules, some being identified remotely for the first time in a Jupiter-family comet, including complex organic molecules such as formamide, ethylene glycol, acetaldehyde, or ethanol. Sensitive upper limits on the abundances of 24 other molecules are obtained. The comet is found to be relatively rich in methanol (3.4% relative to water), but relatively depleted in CO, CS, HNC, HNCO, and HCOOH. 
    more » « less
  8. null (Ed.)
    We present the results of millimetre-wave spectroscopic observations and spectral surveys of the following short-period comets: 21P/Giacobini-Zinner in September 2018, 41P/Tuttle-Giacobini-Kresák in April 2017, and 64P/Swift-Gehrels and 38P/Stephan-Oterma in December 2018, carried out with the Institut de RadioAstronomie Millimétrique (IRAM) 30-m radio telescope at wavelengths between 1 and 3 mm. Comet 21P was also observed in November 1998 with the IRAM 30-m, James Clerk Maxwell Telescope, and the Caltech submillimeter Observatory radio telescopes at wavelengths from 0.8 to 3 mm. The abundances of the following molecules have been determined in those comets: HCN, CH 3 OH, CS, H 2 CO, CH 3 CN, and H 2 S in comet 21P; HCN and CH 3 OH in 41P; HCN, CH 3 OH, and CS in 64P; and CH 3 OH in 38P. The last three comets, classified as carbon-chain typical from visible spectro-photometry, are relatively rich in methanol (3.5–5% relative to water). On the other hand, comet 21P, classified as carbon-chain depleted, shows abundances relative to water which are low for methanol (1.7%), very low for H 2 S (0.1%), and also relatively low for H 2 CO (0.16%) and CO (<2.5%). Observations of comet 21P do not show any change in activity and composition between the 1998 and 2018 perihelions. Sensitive upper limits on the abundances of other molecules such as CO, HNCO, HNC, or SO are also reported for these comets. 
    more » « less