skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blake, Séan P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We review observations of solar activity, geomagnetic variation, and auroral visibility for the extreme geomagnetic storm on 1872 February 4. The extreme storm (referred to here as the Chapman–Silverman storm) apparently originated from a complex active region of moderate area (≈ 500μsh) that was favorably situated near disk center (S19° E05°). There is circumstantial evidence for an eruption from this region at 9–10 UT on 1872 February 3, based on the location, complexity, and evolution of the region, and on reports of prominence activations, which yields a plausible transit time of ≈29 hr to Earth. Magnetograms show that the storm began with a sudden commencement at ≈14:27 UT and allow a minimum Dst estimate of ≤ −834 nT. Overhead aurorae were credibly reported at Jacobabad (British India) and Shanghai (China), both at 19.°9 in magnetic latitude (MLAT) and 24.°2 in invariant latitude (ILAT). Auroral visibility was reported from 13 locations with MLAT below ∣20∣° for the 1872 storm (ranging from ∣10.°0∣–∣19.°9∣ MLAT) versus one each for the 1859 storm (∣17.°3∣ MLAT) and the 1921 storm (∣16.°2∣ MLAT). The auroral extension and conservative storm intensity indicate a magnetic storm of comparable strength to the extreme storms of 1859 September (25.°1 ± 0.°5 ILAT and −949 ± 31 nT) and 1921 May (27.°1 ILAT and −907 ± 132 nT), which places the 1872 storm among the three largest magnetic storms yet observed. 
    more » « less
  2. Abstract Interplanetary (IP) shocks are perturbations observed in the solar wind. IP shocks correlate well with solar activity, being more numerous during times of high sunspot numbers. Earth‐bound IP shocks cause many space weather effects that are promptly observed in geospace and on the ground. Such effects can pose considerable threats to human assets in space and on the ground, including satellites in the upper atmosphere and power infrastructure. Thus, it is of great interest to the space weather community to (a) keep an accurate catalog of shocks observed near Earth, and (b) be able to forecast shock occurrence as a function of the solar cycle (SC). In this work, we use a supervised machine learning regression model to predict the number of shocks expected in SC25 using three previously published sunspot predictions for the same cycle. We predict shock counts to be around 275 ± 10, which is ∼47% higher than the shock occurrence in SC24 (187 ± 8), but still smaller than the shock occurrence in SC23 (343 ± 12). With the perspective of having more IP shocks on the horizon for SC25, we briefly discuss many opportunities in space weather research for the remainder years of SC25. The next decade or so will bring unprecedented opportunities for research and forecasting effects in the solar wind, magnetosphere, ionosphere, and on the ground. As a result, we predict SC25 will offer excellent opportunities for shock occurrences and data availability for conducting space weather research and forecasting. 
    more » « less