skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blakeslee, Richard J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An internationally collaborative airborne campaign in July 2023 – led by the University of Bergen (Norway) and NASA, with contributions from many other institutions – discovered that thunderstorms near Florida and Central America produce gamma rays far more frequently than previously thought. The campaign was called Airborne Lightning Observatory for Fly’s Eye Geostationary Lightning Mapper (GLM) Simulator (FEGS) and Terrestrial Gamma-ray Flashes (TGFs), which shortens to ALOFT. The campaign employed a unique sampling strategy with NASA’s high-altitude ER-2 aircraft, equipped with gamma-ray and lightning sensors, flying near ground-based lightning sensors. Realtime updates from instruments, downlinked to mission scientists on the ground, enabled immediate return to thunderstorm cells found to be producing gamma rays. This maximized the observations of radiation created by strong electric fields in clouds, and showed how gamma-ray production may be physically linked to thunderstorm lifecycle. ALOFT also sampled storms entirely within the stereo-viewing region of the GLM instruments on GOES-16/18 and performed multiple underflights of the International Space Station Lightning Imaging Sensor (ISS LIS), while using an upgraded FEGS instrument that demonstrated the operational value of observing multiple wavelengths (including ultraviolet) with future spaceborne lightning mappers. In addition, a robust complement of airborne active and passive microwave sensors – including X- and W-band Doppler radars, as well as radiometers spanning 10-684 GHz – sampled some of the most intense convection ever overflown by the ER-2. These observations will benefit planned convection-focused NASA spaceborne missions. ALOFT is an exemplar of a high-risk, high-reward field campaign that achieved results far beyond original expectations. 
    more » « less
    Free, publicly-accessible full text available May 5, 2026
  2. Abstract During November 2018–April 2019, an 11-station very high frequency (VHF) Lightning Mapping Array (LMA) was deployed to Córdoba Province, Argentina. The purpose of the LMA was validation of the Geostationary Lightning Mapper (GLM), but the deployment was coordinated with two field campaigns. The LMA observed 2.9 million flashes (≥ five sources) during 163 days, and level-1 (VHF locations), level-2 (flashes classified), and level-3 (gridded products) datasets have been made public. The network’s performance allows scientifically useful analysis within 100 km when at least seven stations were active. Careful analysis beyond 100 km is also possible. The LMA dataset includes many examples of intense storms with extremely high flash rates (>1 s−1), electrical discharges in overshooting tops (OTs), as well as anomalously charged thunderstorms with low-altitude lightning. The modal flash altitude was 10 km, but many flashes occurred at very high altitude (15–20 km). There were also anomalous and stratiform flashes near 5–7 km in altitude. Most flashes were small (<50 km2 area). Comparisons with GLM on 14 and 20 December 2018 indicated that GLM most successfully detected larger flashes (i.e., more than 100 VHF sources), with detection efficiency (DE) up to 90%. However, GLM DE was reduced for flashes that were smaller or that occurred lower in the cloud (e.g., near 6-km altitude). GLM DE also was reduced during a period of OT electrical discharges. Overall, GLM DE was a strong function of thunderstorm evolution and the dominant characteristics of the lightning it produced. 
    more » « less