skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blanchard, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract GRB 221009A is one of the brightest transients ever observed, with the highest peak gamma-ray flux for a gamma-ray burst (GRB). A Type Ic-BL supernova (SN), SN 2022xiw, was definitively detected in late-time JWST spectroscopy (t= 195 days, observer frame). However, photometric studies have found SN 2022xiw to be less luminous (10%−70%) than the canonical GRB-SN, SN 1998bw. We present late-time Hubble Space Telescope (HST)/WFC3 and JWST/NIRCam imaging of the afterglow and host galaxy of GRB 221009A att∼185, 277, and 345 days post-trigger. Our joint archival ground, HST, and JWST light-curve fits show strong support for a break in the light-curve decay slope att= 50 ± 10 days (observer frame) and a SN at <1.5× the optical/near-IR flux of SN 1998bw. This break is consistent with an interpretation as a jet break when requiring slow-cooling electrons in a wind medium with an electron energy spectral indexp> 2 andνmc. Our light curves and joint HST/JWST spectral energy distribution (SED) also show evidence for the late-time emergence of a bluer component in addition to the fading afterglow and SN. We find consistency with the interpretations that this source is either a young, massive, low-metallicity star cluster or a scattered-light echo of the afterglow with a SED shape offν∝ν2.0±1.0
    more » « less
    Free, publicly-accessible full text available May 9, 2026
  2. Abstract We present deep James Webb Space Telescope near-infrared imaging to search for a quiescent or transient counterpart to FRB 20250316A, which was precisely localized with the CHIME Outriggers array to an area of 11 × 13 pc in the outer regions of NGC 4141 atd≈ 40 Mpc. Our F150W2 image reveals a faint source near the center of the fast radio burst (FRB) localization region (“NIR-1”;MF150W2≈ −2.5 mag; probability of chance coincidence ≈0.36), the only source within ≈2.7σ. We find that it is too faint to be a globular cluster, a young star cluster, a red supergiant star, or a giant star near the tip of the red giant branch (RGB). It is instead consistent with a red giant near the RGB “clump” or a massive (≳20M) main-sequence star, although the latter explanation is less likely. The source is too bright to be a supernova (SN) remnant, Crab-like pulsar wind nebula, or isolated magnetar. Alternatively, NIR-1 may represent transient emission, namely a dust echo from an energetic outburst associated with the FRB, in which case we would expect it to fade in future observations. We explore the stellar population near the FRB and find that it is composed of a mix of young massive stars (∼10–100 Myr) in a nearby Hiiregion that extends to the location of FRB 20250316A and old evolved stars (≳Gyr). The overlap with a young stellar population, containing stars of up to ≈20M, may implicate a neutron star/magnetar produced in the core collapse of a massive star as the source of FRB 20250316A. 
    more » « less
    Free, publicly-accessible full text available August 20, 2026
  3. Abstract We present a detailed study of SN 2024ahr, a hydrogen-poor superluminous supernova (SLSN-I), for which we determine a redshift ofz= 0.0861. SN 2024ahr has a peak absolute magnitude ofMg≈Mr≈ −21 mag, rest-frame rise and decline times (50% of peak) of about 40 and 80 days, respectively, and typical spectroscopic evolution in the optical band. Similarly, modeling of the UV/optical light curves with a magnetar spin-down engine leads to typical parameters: an initial spin period of ≈3.3 ms, a magnetic field strength of ≈6 × 1013G, and an ejecta mass of ≈9.5M. Due to its relatively low redshift, we obtained a high signal-to-noise ratio near-IR (NIR) spectrum about 43 rest-frame days postpeak to search for the presence of helium. We do not detect any significant feature at the location of the Heiλ2.058μm feature and place a conservative upper limit of ∼0.05Mon the mass of helium in the outer ejecta. We detect broad features of Mgiλ1.575μm and Mgiiλ2.136μm, which are typical of Type Ic SNe, but with higher velocities. Examining the sample of SLSNe-I with NIR spectroscopy, we find that, unlike SN 2024ahr, these events are generally peculiar. This highlights the need for a large sample of prototypical SLSNe-I with NIR spectroscopy to constrain the fraction of progenitors with helium (Ib-like) and without helium (Ic-like) at the time of explosion, and hence the evolutionary path(s) leading to the rare outcome of SLSNe-I. 
    more » « less
    Free, publicly-accessible full text available July 3, 2026
  4. Abstract We present rest-frame UV Hubble Space Telescope imaging of the largest and most complete sample of 23 long-duration gamma-ray burst (GRB) host galaxies between redshifts 4 and 6. Of these 23, we present new WFC3/F110W imaging for 19 of the hosts, which we combine with archival WFC3/F110W and WFC3/F140W imaging for the remaining four. We use the photometry of the host galaxies from this sample to characterize both the rest-frame UV luminosity function (LF) and the size–luminosity relation of the sample. We find that when assuming the standard Schechter-function parameterization for the UV LF, the GRB host sample is best fit with α = 1.30 0.25 + 0.30 and M * = 20.33 0.54 + 0.44 mag, which are consistent with results based onz∼ 5 Lyman-break galaxies. We find that ∼68% of our size–luminosity measurements fall within or below the same relation for Lyman-break galaxies atz∼ 4. This study observationally confirms expectations that atz∼ 5 Lyman-break and GRB host galaxies should trace the same population and demonstrates the utility of GRBs as probes of hidden star formation in the high-redshift Universe. Under the assumption that GRBs unbiasedly trace star formation at this redshift, our nondetection fraction of 7/23 is consistent at the 95% confidence level with 13%–53% of star formation at redshiftz∼ 5 occurring in galaxies fainter than our detection limit ofM1600Å≈ −18.3 mag. 
    more » « less
  5. ABSTRACT Hydrogen-poor superluminous supernovae (SLSNe) are among the most energetic explosions in the universe, reaching luminosities up to 100 times greater than those of normal supernovae. This paper presents the largest compilation of SLSN photospheric spectra to date, encompassing data from the advanced Public ESO Spectroscopic Survey of Transient Objects (ePESSTO+), the Finding Luminous and Exotic Extragalactic Transients (FLEET) search, and all published spectra up to December 2022. The data set includes a total of 974 spectra of 234 SLSNe. By constructing average phase binned spectra, we find SLSNe initially exhibit high temperatures (10 000–11 000 K), with blue continua and weak lines. A rapid transformation follows, as temperatures drop to 5000–6000 K by 40 d post-peak, leading to stronger P-Cygni features. Variance within the data set is slightly reduced when defining the phase of spectra relative to explosion, rather than peak, and normalising to the population’s median e-folding decline time. Principal Component Analysis (PCA) supports this, requiring fewer components to explain the same level of variation when binning data by scaled days from explosion, suggesting a more homogeneous grouping. Using PCA and K-means clustering, we identify outlying objects with unusual spectroscopic evolution and evidence for energy input from interaction, but find no support for groupings of two or more statistically significant subpopulations. We find Fe ii  $$\lambda$$5169 line velocities closely track the radius implied from blackbody fits, indicating formation near the photosphere. We also confirm a correlation between velocity and velocity gradient, which can be explained if all SLSNe are in homologous expansion but with different scale velocities. This behaviour aligns with expectations for an internal powering mechanism. 
    more » « less
    Free, publicly-accessible full text available July 21, 2026
  6. Abstract We present the discovery of the radio afterglow of the short gamma-ray burst (GRB) 210726A, localized to a galaxy at a photometric redshift ofz∼ 2.4. While radio observations commenced ≲1 day after the burst, no radio emission was detected until ∼11 days. The radio afterglow subsequently brightened by a factor of ∼3 in the span of a week, followed by a rapid decay (a “radio flare”). We find that a forward shock afterglow model cannot self-consistently describe the multiwavelength X-ray and radio data, and underpredicts the flux of the radio flare by a factor of ≈5. We find that the addition of substantial energy injection, which increases the isotropic kinetic energy of the burst by a factor of ≈4, or a reverse shock from a shell collision are viable solutions to match the broadband behavior. Atz∼ 2.4, GRB 210726A is among the highest-redshift short GRBs discovered to date, as well as the most luminous in radio and X-rays. Combining and comparing all previous radio afterglow observations of short GRBs, we find that the majority of published radio searches conclude by ≲10 days after the burst, potentially missing these late-rising, luminous radio afterglows. 
    more » « less
  7. Abstract Stripped-envelope core-collapse supernovae can be divided into two broad classes: the common Type Ib/c supernovae (SNe Ib/c), powered by the radioactive decay of56Ni, and the rare superluminous supernovae (SLSNe), most likely powered by the spin-down of a magnetar central engine. Up to now, the intermediate regime between these two populations has remained mostly unexplored. Here, we present a comprehensive study of 40luminous supernovae(LSNe), SNe with peak magnitudes ofMr= −19 to −20 mag, bound by SLSNe on the bright end and by SNe Ib/c on the dim end. Spectroscopically, LSNe appear to form a continuum between Type Ic SNe and SLSNe. Given their intermediate nature, we model the light curves of all LSNe using a combined magnetar plus radioactive decay model and find that they are indeed intermediate, not only in terms of their peak luminosity and spectra, but also in their rise times, power sources, and physical parameters. We subclassify LSNe into distinct groups that are either as fast evolving as SNe Ib/c or as slow evolving as SLSNe, and appear to be either radioactively or magnetar powered, respectively. Our findings indicate that LSNe are powered by either an overabundant production of56Ni or by weak magnetar engines, and may serve as the missing link between the two populations. 
    more » « less
  8. Abstract In 2019 November, we began operating Finding Luminous and Exotic Extragalactic Transients (FLEET), a machine-learning algorithm designed to photometrically identify Type I superluminous supernovae (SLSNe) in transient alert streams. Through this observational campaign, we spectroscopically classified 21 of the 50 SLSNe identified worldwide between 2019 November and 2022 January. Based on our original algorithm, we anticipated that FLEET would achieve a purity of about 50% for transients with a probability of being an SLSN,P(SLSN-I) > 0.5; the true on-sky purity we obtained is closer to 80%. Similarly, we anticipated FLEET could reach a completeness of about 30%, and we indeed measure an upper limit on the completeness of ≲33%. Here we present FLEET 2.0, an updated version of FLEET trained on 4780 transients (almost three times more than FLEET 1.0). FLEET 2.0 has a similar predicted purity to FLEET 1.0 but outperforms FLEET 1.0 in terms of completeness, which is now closer to ≈40% for transients withP(SLSN-I) > 0.5. Additionally, we explore the possible systematics that might arise from the use of FLEET for target selection. We find that the population of SLSNe recovered by FLEET is mostly indistinguishable from the overall SLSN population in terms of physical and most observational parameters. We provide FLEET as an open source package on GitHub: https://github.com/gmzsebastian/FLEET. 
    more » « less
  9. Abstract We present an expansion of FLEET, a machine-learning algorithm optimized to select transients that are most likely tidal disruption events (TDEs). FLEET is based on a random forest algorithm trained on both the light curves and host galaxy information of 4779 spectroscopically classified transients. We find that for transients with a probability of being a TDE,P(TDE) > 0.5, we can successfully recover TDEs with ≈40% completeness and ≈30% purity when using their first 20 days of photometry or a similar completeness and ≈50% purity when including 40 days of photometry, an improvement of almost 2 orders of magnitude compared to random selection. Alternatively, we can recover TDEs with a maximum purity of ≈80% and a completeness of ≈30% when considering only transients withP(TDE) > 0.8. We explore the use of FLEET for future time-domain surveys such as the Legacy Survey of Space and Time on the Vera C. Rubin Observatory (Rubin) and the Nancy Grace Roman Space Telescope (Roman). We estimate that ∼104well-observed TDEs could be discovered every year by Rubin and ∼200 TDEs by Roman. Finally, we run FLEET on the TDEs from our Rubin survey simulation and find that we can recover ∼30% of them at redshiftz< 0.5 withP(TDE) > 0.5, or ∼3000 TDEs yr–1that FLEET could uncover from the Rubin stream. We have demonstrated that we will be able to run FLEET on Rubin photometry as soon as this survey begins. FLEET is provided as an open source package on GitHub: https://github.com/gmzsebastian/FLEET. 
    more » « less
  10. Abstract We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak (MV≈ − 18.2 mag) and plateau (MV≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day−1. During the rising phase,U−Vcolor shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both theU−Vcolor and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 1014cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0Myr−1in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1Myr−1in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1Mof the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models. 
    more » « less