skip to main content

Search for: All records

Creators/Authors contains: "Blanco-Bercial, Leocadio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Diel rhythms are observed across taxa and are important for maintaining synchrony between the environment and organismal physiology. A striking example of this is the diel vertical migration undertaken by zooplankton, some of which, such as the 5 mm-long copepod Pleuromamma xiphias (P. xiphias), migrate hundreds of meters daily between the surface ocean and deeper waters. Some of the molecular pathways that underlie the expressed phenotype at different stages of this migration are entrained by environmental variables (e.g., day length and food availability), while others are regulated by internal clocks. We identified a series of proteomic biomarkers that vary across ocean DVM and applied them to copepods incubated in 24 h of darkness to assess circadian control. The dark-incubated copepods shared some proteomic similarities to the ocean-caught copepods (i.e., increased abundance of carbohydrate metabolism proteins at night). Shipboard-incubated copepods demonstrated a clearer distinction between night and day proteomic profiles, and more proteins were differentially abundant than in the in situ copepods, even in the absence of the photoperiod and other environmental cues. This pattern suggests that there is a canalization of rhythmic diel physiology in P. xiphias that reflects likely circadian clock control over diverse molecular pathways. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Abstract

    Microbial associations that result in phytoplankton mortality are important for carbon transport in the ocean. This includes parasitism, which in microbial food webs is dominated by the marine alveolate group, Syndiniales. Parasites are expected to contribute to carbon recycling via host lysis; however, knowledge on host dynamics and correlation to carbon export remain unclear and limit the inclusion of parasitism in biogeochemical models. We analyzed a 4-year 18S rRNA gene metabarcoding dataset (2016–19), performing network analysis for 12 discrete depths (1–1000 m) to determine Syndiniales–host associations in the seasonally oligotrophic Sargasso Sea. Analogous water column and sediment trap data were included to define environmental drivers of Syndiniales and their correlation with particulate carbon flux (150 m). Syndiniales accounted for 48–74% of network edges, most often associated with Dinophyceae and Arthropoda (mainly copepods) at the surface and Rhizaria (Polycystinea, Acantharea, and RAD-B) in the aphotic zone. Syndiniales were the only eukaryote group to be significantly (and negatively) correlated with particulate carbon flux, indicating their contribution to flux attenuation via remineralization. Examination of Syndiniales amplicons revealed a range of depth patterns, including specific ecological niches and vertical connection among a subset (19%) of the community, the latter implying sinking of parasites (infected hosts or spores) on particles. Our findings elevate the critical role of Syndiniales in marine microbial systems and reveal their potential use as biomarkers for carbon export.

    more » « less
  3. Abstract

    Ocean spring phytoplankton blooms are dynamic periods important to global primary production. We document vertical patterns of a diverse suite of eukaryotic algae, the prasinophytes, in the North Atlantic Subtropical Gyre with monthly sampling over four years at the Bermuda Atlantic Time-series Study site. Water column structure was used to delineate seasonal stability periods more ecologically relevant than seasons defined by calendar dates. During winter mixing, tiny prasinophytes dominated by Class II comprise 46  ±  24% of eukaryotic algal (plastid-derived) 16S rRNA V1-V2 amplicons, specificallyOstreococcusClade OII,Micromonas commoda, andBathycoccus calidus. In contrast, Class VII are rare and Classes I and VI peak during warm stratified periods when surface eukaryotic phytoplankton abundances are low. Seasonality underpins a reservoir of genetic diversity from multiple prasinophyte classes during warm periods that harbor ephemeral taxa. Persistent Class II sub-species dominating the winter/spring bloom period retreat to the deep chlorophyll maximum in summer, poised to seed the mixed layer upon winter convection, exposing a mechanism for initiating high abundances at bloom onset. Comparisons to tropical oceans reveal broad distributions of the dominant sub-species herein. This unparalleled window into temporal and spatial niche partitioning of picoeukaryotic primary producers demonstrates how key prasinophytes prevail in warm oceans.

    more » « less
  4. Sergio Stefanni (Ed.)

    Zooplankton diversity in the deep “midnight zone” (>1000 m), where sunlight does not reach, remains largely unknown. Uncovering such diversity has been challenging because of the major difficulties in sampling deep pelagic fauna and identifying many (unknown) species that belong to these complex swimmer assemblages. In this study, we evaluated zooplankton diversity using two taxonomic marker genes: mitochondrial cytochrome oxidase subunit 1 (COI) and nuclear 18S ribosomal RNA (18S). We collected samples from plankton net tows, ranging from the surface to a depth of 5000 m above the Atacama Trench in the Southeast Pacific. Our study aimed to assess the zooplankton diversity among layers from the upper 1000 m to the ultra-deep abyssopelagic zone to test the hypothesis of decreasing diversity with depth resulting from limited carbon sources. The results showed unique, highly vertically structured communities within the five depth strata sampled, with maximal species richness observed in the upper bathypelagic layer (1000–2000 m). The high species richness of zooplankton (>750 OTUS) at these depths was higher than that found in the upper 1000 m. The vertical diversity trend exhibited a pattern similar to the well-known vertical pattern described for the benthic system. However, a large part of this diversity was either unknown (>50%) or could not be assigned to any known species in current genetic diversity databases. DNA analysis showed that the Calanoid copepods, mostly represented bySubeucalanus monachus, the Euphausiacea,Euphausia mucronata, and the halocypridade,Paraconchoecia dasyophthalma, dominated the community. Water column temperature, dissolved oxygen, particulate carbon, and nitrogen appeared to be related to the observed vertical diversity pattern. Our findings revealed rich and little-known zooplankton diversity in the deep sea, emphasizing the importance of further exploration of this ecosystem to conserve and protect its unique biota.

    more » « less
    Free, publicly-accessible full text available December 7, 2024
  5. Abstract

    Due to historical under‐sampling of the deep ocean, the distributional ranges of mesopelagic zooplankton are not well documented, leading to uncertainty about the mechanisms that shape midwater zooplankton community composition. Using a combination of DNA metabarcoding (18S‐V4 and mtCOI) and trait‐based analysis, we characterized zooplankton diversity and community composition in the upper 1000 m of the northeast Pacific Ocean. We tested whether the North Pacific Transition Zone is a biogeographic boundary region for mesopelagic zooplankton. We also tested whether zooplankton taxa occupying different vertical habitats and exhibiting different ecological traits differed in the ranges of temperature, Chl‐a, and dissolved oxygen conditions inhabited. The depth of the maximum taxonomic richness deepened with increasing latitude in the North Pacific. Community similarity in the mesopelagic zone also increased in comparison with the epipelagic zone, and no evidence was found for a biogeographic boundary between previously delineated mesopelagic biogeochemical provinces. Epipelagic zooplankton exhibited broader temperature and Chl‐aranges than mesopelagic taxa. Within the epipelagic, taxa with broader temperature and Chl‐aranges also had broader distributional ranges. However, mesopelagic taxa were distributed across wider dissolved oxygen ranges, and within the mesopelagic, only oxygen ranges covaried with distributional ranges. Environmental and distributional ranges also varied among traits, both for epipelagic taxa and mesopelagic taxa. The strongest differences in both environmental and distributional ranges were observed for taxa with or without diel vertical migration behavior. Our results suggest that species traits can influence the differential effects of physical dispersal and environmental selection in shaping biogeographic distributions.

    more » « less
  6. Abstract

    Zooplankton undergo a diel vertical migration (DVM) which exposes them to gradients of light, temperature, oxygen, and food availability on a predictable daily schedule. Disentangling the co‐varying and potentially synergistic interactions on metabolic rates has proven difficult, despite the importance of this migration for the delivery of metabolic waste products to the distinctly different daytime (deep) and nighttime (surface) habitats. This study examines the transcriptomic and proteomic profiles of the circumglobal migratory copepod,Pleuromamma xiphias, over the diel cycle. The transcriptome showed that 96% of differentially expressed genes were upregulated during the middle of the day – the period often considered to be of lowest zooplankton activity. The changes in protein abundance were more spread out over time, peaking (42% of comparisons) in the early evening. Between 9:00 and 15:00, both the transcriptome and proteome datasets showed increased expression related to chitin synthesis and degradation. Additionally, at 09:00 and 22:00, there were increases in myosin and vitellogenin proteins, potentially linked to the stress of migration and/or reproductive investment. Based on protein abundances detected, there is an inferred switch in broad metabolic processes, shifting from electron transport system in the day to glycolysis and glycogen mobilization in the afternoon/evening. These observations provide evidence of the diel impact of DVM on transcriptomic and proteomic pathways that likely influence metabolic processes and subsequent excretion products, and clarify how this behaviour results in the direct rapid transport of waste metabolites from the surface to the deep ocean.

    more » « less
  7. Abstract

    Mesozooplankton is a very diverse group of small animals ranging in size from 0.2 to 20 mm not able to swim against ocean currents. It is a key component of pelagic ecosystems through its roles in the trophic networks and the biological carbon pump. Traditionally studied through microscopes, recent methods have been however developed to rapidly acquire large amounts of data (morphological, molecular) at the individual scale, making it possible to study mesozooplankton using a trait‐based approach. Here, combining quantitative imaging with metabarcoding time‐series data obtained in the Sargasso Sea at the Bermuda Atlantic Time‐series Study (BATS) site, we showed that organisms' transparency might be an important trait to also consider regarding mesozooplankton impact on carbon export, contrary to the common assumption that just size is the master trait directing most mesozooplankton‐linked processes. Three distinct communities were defined based on taxonomic composition, and succeeded one another throughout the study period, with changing levels of transparency among the community. A co‐occurrences' network was built from metabarcoding data revealing six groups of taxa. These were related to changes in the functioning of the ecosystem and/or in the community's morphology. The importance of Diel Vertical Migration at BATS was confirmed by the existence of a group made of taxa known to be strong migrators. Finally, we assessed if metabarcoding can provide a quantitative approach to biomass and/or abundance of certain taxa. Knowing more about mesozooplankton diversity and its impact on ecosystem functioning would allow to better represent them in biogeochemical models.

    more » « less
  8. Abstract

    The bulk of knowledge on marine ciliates is from shallow and/or sunlit waters. We studied ciliate diversity and distribution across epi‐ and mesopelagic oceanic waters, using DNA metabarcoding and phylogeny‐based metrics. We analyzed sequences of the 18S rRNA gene (V4 region) from 369 samples collected at 12 depths (0–1000 m) at the Bermuda Atlantic Time‐series Study site of the Sargasso Sea (North Atlantic) monthly for 3 years. The comprehensive depth and temporal resolutions analyzed led to three main findings. First, there was a gradual but significant decrease in alpha‐diversity (based on Faith's phylogenetic diversity index) from surface to 1000‐m waters. Second, multivariate analyses of beta‐diversity (based on UniFrac distances) indicate that ciliate assemblages change significantly from photic to aphotic waters, with a switch from Oligotrichea to Oligohymenophorea prevalence. Third, phylogenetic placement of sequence variants and clade‐level correlations (EPA‐ng and GAPPA algorithms) show Oligotrichea, Litostomatea, Prostomatea, and Phyllopharyngea as anti‐correlated with depth, while Oligohymenophorea (especially Apostomatia) have a direct relationship with depth. Two enigmatic environmental clades include either prevalent variants widely distributed in aphotic layers (the Oligohymenophorea OLIGO5) or subclades differentially distributed in photic versus aphotic waters (the Discotrichidae NASSO1). These results settle contradictory relationships between ciliate alpha‐diversity and depth reported before, suggest functional changes in ciliate assemblages from photic to aphotic waters (with the prevalence of algivory and mixotrophy vs. omnivory and parasitism, respectively), and indicate that contemporary taxon distributions in the vertical profile have been strongly influenced by evolutionary processes. Integration of DNA sequences with organismal data (microscopy, functional experiments) and development of databases that link these sources of information remain as major tasks to better understand ciliate diversity, ecological roles, and evolution in the ocean.

    more » « less