skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Bochniak, Arkadiusz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Advancing a microscopic framework that rigorously unveils the underlying topological hallmarks of fractional quantum Hall (FQH) fluids is a prerequisite for making progress in the classification of strongly-coupled topological matter. We present a second-quantization framework that reveals an exact fusion mechanism for particle fractionalization in FQH fluids, and uncovers the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level. We show the first exact analytic computation of the quasielectron Berry connections leading to its fractional charge and exchange statistics, and perform Monte Carlo simulations that numerically confirm the fusion mechanism for quasiparticles. We express the sequence of (bosonic and fermionic) Laughlin second-quantized states, highlighting the lack of local condensation, and present a rigorous constructive subspace bosonization dictionary for the bulk fluid. Finally, we establish universal long-distance behavior of edge excitations by formulating a conjecture based on the DNA, or root state, of the FQH fluid.

     
    more » « less