skip to main content

Search for: All records

Creators/Authors contains: "Bohrer, Gil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We examined the seasonality of photosynthesis in 46 evergreen needleleaf (evergreen needleleaf forests (ENF)) and deciduous broadleaf (deciduous broadleaf forests (DBF)) forests across North America and Eurasia. We quantified the onset and end (StartGPPand EndGPP) of photosynthesis in spring and autumn based on the response of net ecosystem exchange of CO2to sunlight. To test the hypothesis that snowmelt is required for photosynthesis to begin, these were compared with end of snowmelt derived from soil temperature. ENF forests achieved 10% of summer photosynthetic capacity ∼3 weeks before end of snowmelt, while DBF forests achieved that capacity ∼4 weeks afterward. DBF forests increased photosynthetic capacity in spring faster (1.95% d−1) than ENF (1.10% d−1), and their active season length (EndGPP–StartGPP) was ∼50 days shorter. We hypothesized that warming has influenced timing of the photosynthesis season. We found minimal evidence for long‐term change in StartGPP, EndGPP, or air temperature, but their interannual anomalies were significantly correlated. Warmer weather was associated with earlier StartGPP(1.3–2.5 days °C−1) or later EndGPP(1.5–1.8 days °C−1, depending on forest type and month). Finally, we tested whether existing phenological models could predict StartGPPand EndGPP. For ENF forests, air temperature‐ and daylength‐based models provided best predictions for StartGPP, while a chilling‐degree‐day model was best for EndGPP. The root mean square errors (RMSE) between predicted and observed StartGPPand EndGPPwere 11.7 and 11.3 days, respectively. For DBF forests, temperature‐ and daylength‐based models yielded the best results (RMSE 6.3 and 10.5 days).

    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. To understand patterns in CO2 partial pressure (PCO2) over time in wetlands’ surface water and porewater, we examined the relationship between PCO2 and land–atmosphere flux of CO2 at the ecosystem scale at 22 Northern Hemisphere wetland sites synthesized through an open call. Sites spanned 6 major wetland types (tidal, alpine, fen, bog, marsh, and prairie pothole/karst), 7 Köppen climates, and 16 different years. Ecosystem respiration (Reco) and gross primary production (GPP), components of vertical CO2 flux, were compared to PCO2, a component of lateral CO2 flux, to determine if photosynthetic rates and soil respiration consistently influence wetland surface and porewater CO2 concentrations across wetlands. Similar to drivers of primary productivity at the ecosystem scale, PCO2 was strongly positively correlated with air temperature (Tair) at most sites. Monthly average PCO2 tended to peak towards the middle of the year and was more strongly related to Reco than GPP. Our results suggest Reco may be related to biologically driven PCO2 in wetlands, but the relationship is site-specific and could be an artifact of differently timed seasonal cycles or other factors. Higher levels of discharge do not consistently alter the relationship between Reco and temperature normalized PCO2. This work synthesizes relevant data and identifies key knowledge gaps in drivers of wetland respiration. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Abstract

    The increasingly large volume of trajectories of moving entities obtained through GPS and cellphone tracking, telemetry, and other location‐aware technologies motivates researchers to understand the implicit patterns hidden in movement trajectories and understand how movement is influenced by the environmental context. Trajectory similarity serves as an important tool in computational movement analysis and as the foundation of revealing those patterns. However, there are various trajectory similarity measures, each of which has its own strengths and weaknesses. In this article, we present a hierarchical clustering framework that integrates five commonly used similarity measures, including Fréchet distance, dynamic time warping, Hausdorff distance, longest common subsequence, and normalized weighted edit distance, a special kind of edit distance for movement analysis. The framework aims at clustering similar patterns and identifying variability in movement. The optimal number of clusters are first obtained. Then, the clusters are characterized by environmental variables to explore the associations between variability in movement and the environmental conditions. We evaluate the proposed framework using 15 years of tracking data of turkey vultures, tracked at 1‐ to 3‐h sampling intervals, during their fall and spring migration seasons. The results suggest that, at 5% significance level, turkey vultures select their movement paths intentionally and those selections appear to be related to certain environmental context variables, including thermal uplift, vegetation state (observed indirectly through Normalized Difference Vegetation Index), temperature, precipitation, tailwind, and crosswind. And interestingly, there exist preferential differences among individuals. Although the preference of the same turkey vulture is not strictly consistent over different years, each individual tends to preserve a more similar preference over different years, compared with the preferences of other turkey vultures.

    more » « less
  4. Abstract

    As human and automated sensor networks collect increasingly massive volumes of animal observations, new opportunities have arisen to use these data to infer or track species movements. Sources of broad scale occurrence datasets include crowdsourced databases, such as eBird and iNaturalist, weather surveillance radars, and passive automated sensors including acoustic monitoring units and camera trap networks. Such data resources represent static observations, typically at the species level, at a given location. Nonetheless, by combining multiple observations across many locations and times it is possible to infer spatially continuous population-level movements. Population-level movement characterizes the aggregated movement of individuals comprising a population, such as range contractions, expansions, climate tracking, or migration, that can result from physical, behavioral, or demographic processes. A desire to model population movements from such forms of occurrence data has led to an evolving field that has created new analytical and statistical approaches that can account for spatial and temporal sampling bias in the observations. The insights generated from the growth of population-level movement research can complement the insights from focal tracking studies, and elucidate mechanisms driving changes in population distributions at potentially larger spatial and temporal scales. This review will summarize current broad-scale occurrence datasets, discuss the latest approaches for utilizing them in population-level movement analyses, and highlight studies where such analyses have provided ecological insights. We outline the conceptual approaches and common methodological steps to infer movements from spatially distributed occurrence data that currently exist for terrestrial animals, though similar approaches may be applicable to plants, freshwater, or marine organisms.

    more » « less
  5. Abstract. Modelling the water transport along the soil–plant–atmosphere continuum is fundamental to estimating and predicting transpiration fluxes. A Finite-difference Ecosystem-scale Tree Crown Hydrodynamics model (FETCH3) for the water fluxes across the soil–plant–atmosphere continuum is presented here. The model combines the water transport pathways into one vertical dimension, and assumes that the water flow through the soil, roots, and above-ground xylem can be approximated as flow in porous media. This results in a system of three partial differential equations, resembling the Richardson–Richards equation, describing the transport of water through the plant system and with additional terms representing sinks and sources for the transfer of water from the soil to the roots and from the leaves to the atmosphere. The numerical scheme, developed in Python 3, was tested against exact analytical solutions for steady state and transient conditions using simplified but realistic model parameterizations. The model was also used to simulate a previously published case study, where observed transpiration rates were available, to evaluate model performance. With the same model setup as the published case study, FETCH3 results were in agreement with observations. Through a rigorous coupling of soil, root xylem, and stem xylem, FETCH3 can account for variable water capacitance, while conserving mass and the continuity of the water potential between these three layers. FETCH3 provides a ready-to-use open access numerical model for the simulation of water fluxes across the soil–plant–atmosphere continuum. 
    more » « less
  6. null (Ed.)