Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2023
-
Abstract Accounting for temporal changes in carbon dioxide (CO2) effluxes from freshwaters remains a challenge for global and regional carbon budgets. Here, we synthesize 171 site-months of flux measurements of CO2based on the eddy covariance method from 13 lakes and reservoirs in the Northern Hemisphere, and quantify dynamics at multiple temporal scales. We found pronounced sub-annual variability in CO2flux at all sites. By accounting for diel variation, only 11% of site-months were net daily sinks of CO2. Annual CO2emissions had an average of 25% (range 3%–58%) interannual variation. Similar to studies on streams, nighttime emissions regularly exceeded daytime emissions. Biophysical regulations of CO2flux variability were delineated through mutual information analysis. Sample analysis of CO2fluxes indicate the importance of continuous measurements. Better characterization of short- and long-term variability is necessary to understand and improve detection of temporal changes of CO2fluxes in response to natural and anthropogenic drivers. Our results indicate that existing global lake carbon budgets relying primarily on daytime measurements yield underestimates of net emissions.
-
Free, publicly-accessible full text available July 1, 2023
-
Abstract As human and automated sensor networks collect increasingly massive volumes of animal observations, new opportunities have arisen to use these data to infer or track species movements. Sources of broad scale occurrence datasets include crowdsourced databases, such as eBird and iNaturalist, weather surveillance radars, and passive automated sensors including acoustic monitoring units and camera trap networks. Such data resources represent static observations, typically at the species level, at a given location. Nonetheless, by combining multiple observations across many locations and times it is possible to infer spatially continuous population-level movements. Population-level movement characterizes the aggregated movement of individuals comprising a population, such as range contractions, expansions, climate tracking, or migration, that can result from physical, behavioral, or demographic processes. A desire to model population movements from such forms of occurrence data has led to an evolving field that has created new analytical and statistical approaches that can account for spatial and temporal sampling bias in the observations. The insights generated from the growth of population-level movement research can complement the insights from focal tracking studies, and elucidate mechanisms driving changes in population distributions at potentially larger spatial and temporal scales. This review will summarize current broad-scale occurrence datasets, discussmore »
-
Abstract. Modelling the water transport along the soil–plant–atmosphere continuum is fundamental to estimating and predicting transpiration fluxes. A Finite-difference Ecosystem-scale Tree Crown Hydrodynamics model (FETCH3) for the water fluxes across the soil–plant–atmosphere continuum is presented here. The model combines the water transport pathways into one vertical dimension, and assumes that the water flow through the soil, roots, and above-ground xylem can be approximated as flow in porous media. This results in a system of three partial differential equations, resembling the Richardson–Richards equation, describing the transport of water through the plant system and with additional terms representing sinks and sources for the transfer of water from the soil to the roots and from the leaves to the atmosphere. The numerical scheme, developed in Python 3, was tested against exact analytical solutions for steady state and transient conditions using simplified but realistic model parameterizations. The model was also used to simulate a previously published case study, where observed transpiration rates were available, to evaluate model performance. With the same model setup as the published case study, FETCH3 results were in agreement with observations. Through a rigorous coupling of soil, root xylem, and stem xylem, FETCH3 can account for variable water capacitance, whilemore »
-
Solar-Induced Chlorophyll Fluorescence (SIF) can provide key information about the state of photosynthesis and offers the prospect of defining remote sensing-based estimation of Gross Primary Production (GPP). There is strong theoretical support for the link between SIF and GPP and this relationship has been empirically demonstrated using ground-based, airborne, and satellite-based SIF observations, as well as modeling. However, most evaluations have been based on monthly and annual scales, yet the GPP:SIF relations can be strongly influenced by both vegetation structure and physiology. At the monthly timescales, the structural response often dominates but short-term physiological variations can strongly impact the GPP:SIF relations. Here, we test how well SIF can predict the inter-daily variation of GPP during the growing season and under stress conditions, while taking into account the local effect of sites and abiotic conditions. We compare the accuracy of GPP predictions from SIF at different timescales (half-hourly, daily, and weekly), while evaluating effect of adding environmental variables to the relationship. We utilize observations for years 2018–2019 at 31 mid-latitudes, forested, eddy covariance (EC) flux sites in North America and Europe and use TROPOMI satellite data for SIF. Our results show that SIF is a good predictor of GPP, when accountingmore »