skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bortz, Simon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We prove that if a parabolic Lipschitz (i.e., Lip(1,1/2)) graph domain has the property that its caloric measure is parabolic$$A_{\infty }$$ A with respect to surface measure (which property is in turn equivalent to$$\mathrm{L}^{p}$$ L p solvability of the Dirichlet problem for some finite$$p$$ p ), then the function defining the graph has a half-order time derivative in the space of (parabolic) bounded mean oscillation. Equivalently, we prove that the$$A_{\infty }$$ A property of caloric measure implies, in this case, that the boundary is parabolic uniformly rectifiable. Consequently, by combining our result with the work of Lewis and Murray we resolve a long standing open problem in the field by characterizing those parabolic Lipschitz graph domains for which one has$$\mathrm{L}^{p}$$ L p solvability (for some$$p <\infty $$ p < ) of the Dirichlet problem for the heat equation. The key idea of our proof is to view the level sets of the Green function as extensions of the original boundary graph for which we can prove (local) square function estimates of Littlewood-Paley type. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. We show that if $$\Omega$$ is a vanishing chord-arc domain and $$L$$ is a divergence-form elliptic operator with H\"older-continuous coefficient matrix, then $$\log k_L \in VMO$, where $$k_L$$ is the elliptic kernel for $$L$$ in the domain $$\Omega$$. This extends the previous work of Kenig and Toro in the case of the Laplacian 
    more » « less
  3. Let \(\Sigma\) be a closed subset of \(\mathbb{R}^{n+1}\) which is parabolic Ahlfors-David regular and assume that \(\Sigma\) satisfies a 2-sided corkscrew condition. Assume, in addition, that \(\Sigma\) is either time-forwards Ahlfors-David regular, time-backwards Ahlfors-David regular, or parabolic uniform rectifiable. We then first prove that \(\Sigma\) satisfies a weak synchronized two cube condition. Based on this we are able to revisit the argument of Nyström and Strömqvist (2009) and prove that \(\Sigma\) contain suniform big pieces of Lip(1,1/2) graphs. When \(\Sigma\) is parabolic uniformly rectifiable the construction can be refined and in this case we prove that \(\Sigma\) contains uniform big pieces of regular parabolic Lip(1,1/2) graphs. Similar results hold if \(\Omega\subset\mathbb{R}^{n+1}\) is a connected component of \(\mathbb{R}^{n+1}\setminus\Sigma\) and in this context we also give a parabolic counterpart of the main result of Azzam et al. (2017) by proving that if \(\Omega\) is a one-sided parabolic chord arc domain, and if \(\Sigma\) is parabolic uniformly rectifiable, then \(\Omega\) is in fact a parabolic chord arc domain. Our results give a flexible parabolic version of the classical (elliptic) result of David and Jerison (1990) concerning the existence of uniform big pieces of Lipschitz graphs for sets satisfying a two disc condition. 
    more » « less