- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bose, Souvik (2)
-
Joshi, Jayant (2)
-
Adhikari, Laxman (1)
-
Airapetian, Vladimir (1)
-
Albers, Joshua (1)
-
Alberti, Tommaso (1)
-
Alfred, De Wijn (1)
-
Anastasiadis, Anastasios (1)
-
Andretta, Vincenzo (1)
-
Antolin, Patrick (1)
-
Athanasios, Kouloumvakos (1)
-
Auchère, Frédéric (1)
-
Aulanier, Guillaume (1)
-
Badman, Samuel (1)
-
Bahauddin, Shah (1)
-
Balasis, Georgios (1)
-
Bale, Stuart (1)
-
Bandyopadhyay, Riddhi (1)
-
Barczynski, Krzysztof (1)
-
Baso, Carlos José (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Context. Spectroscopic observations of the emission lines formed in the solar transition region commonly show persistent downflows on the order of 10−15 km s −1 . The cause of such downflows, however, is still not fully clear and has remained a matter of debate. Aims. We aim to understand the cause of such downflows by studying the coronal and transition region responses to the recently reported chromospheric downflowing rapid redshifted excursions (RREs) and their impact on the heating of the solar atmosphere. Methods. We have used two sets of coordinated data from the Swedish 1 m Solar Telescope, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory for analyzing the response of the downflowing RREs in the transition region and corona. To provide theoretical support, we use an already existing 2.5D magnetohydrodynamic simulation of spicules performed with the Bifrost code. Results. We find ample occurrences of downflowing RREs and show several examples of their spatio-temporal evolution, sampling multiple wavelength channels ranging from the cooler chromospheric to the hotter coronal channels. These downflowing features are thought to be likely associated with the returning components of the previously heated spicular plasma. Furthermore, the transition region Doppler shifts associated with them are close to the average redshifts observed in this region, which further implies that these flows could (partly) be responsible for the persistent downflows observed in the transition region. We also propose two mechanisms – (i) a typical upflow followed by a downflow and (ii) downflows along a loop –from the perspective of a numerical simulation that could explain the ubiquitous occurrence of such downflows. A detailed comparison between the synthetic and observed spectral characteristics reveals a distinctive match and further suggests an impact on the heating of the solar atmosphere. Conclusions. We present evidence that suggests that at least some of the downflowing RREs are the chromospheric counterparts of the transition region and lower coronal downflows.more » « less
-
Raouafi, Nour E.; Hoeksema, J. Todd; Newmark, Jeffrey S.; Gibson, Sarah; Berger, Thomas E.; Upton, Lisa A.; Vourlidas, Angelos; Hassler, Donald M.; Kinnison, James; Ho, George C.; et al (, Bulletin of the AAS)This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere.more » « less
An official website of the United States government
