skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bouaynaya, Nidhal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data-driven Deep Learning (DL) models have revolutionized autonomous systems, but ensuring their safety and reliability necessitates the assessment of predictive confidence or uncertainty. Bayesian DL provides a principled approach to quantify uncertainty via probability density functions defined over model parameters. However, the exact solution is intractable for most DL models, and the approximation methods, often based on heuristics, suffer from scalability issues and stringent distribution assumptions and may lack theoretical guarantees. This work develops a Sequential Importance Sampling framework that approximates the posterior probability density function through weighted samples (or particles), which can be used to find the mean, variance, or higher-order moments of the posterior distribution. We demonstrate that propagating particles, which capture information about the higher-order moments, through the layers of the DL model results in increased robustness to natural and malicious noise (adversarial attacks). The variance computed from these particles effectively quantifies the model’s decision uncertainty, demonstrating well-calibrated and accurate predictive confidence. 
    more » « less
  2. Manser, Kimberly E.; Rao, Raghuveer M.; Howell, Christopher L. (Ed.)
  3. Deep learning models have achieved state-of-the-art accuracy in complex tasks, sometimes outperforming human-level accuracy. Yet, they suffer from vulnerabilities known as adversarial attacks, which are imperceptible input perturbations that fool the models on inputs that were originally classified correctly. The adversarial problem remains poorly understood and commonly thought to be an inherent weakness of deep learning models. We argue that understanding and alleviating the adversarial phenomenon may require us to go beyond the Euclidean view and consider the relationship between the input and output spaces as a statistical manifold with the Fisher Information as its Riemannian metric. Under this information geometric view, the optimal attack is constructed as the direction corresponding to the highest eigenvalue of the Fisher Information Matrix - called the Fisher spectral attack. We show that an orthogonal transformation of the data cleverly alters its manifold by keeping the highest eigenvalue but changing the optimal direction of attack; thus deceiving the attacker into adopting the wrong direction. We demonstrate the defensive capabilities of the proposed orthogonal scheme - against the Fisher spectral attack and the popular fast gradient sign method - on standard networks, e.g., LeNet and MobileNetV2 for benchmark data sets, MNIST and CIFAR-10. 
    more » « less