skip to main content

Search for: All records

Creators/Authors contains: "Bouwma-Gearhart, Jana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Academic research has led to a plethora of innovations and entrepreneurial resources (I&E), allowing for enhancements to the greater good. Institutions of higher education have recognized the value of faculty (and student) I&E in mission statements and strategic plans, including developing students’ skills, thinking, and employability. Yet commensurate promotion and tenure processes and policies are not a certainty. We describe (1) mapping the unknown terrain of factors relevant to the evaluation of tenure-line faculty members’ I&E in United States promotion considerations, and related training for students via a survey of 99 diverse institutions, and (2) recommendations that inform an alliancemore »of 67+ US institutions pursuing best practices for recognizing faculty I&E impact through reward structures.« less
    Free, publicly-accessible full text available September 1, 2022
  2. The motivation for this exploratory qualitative study is to understand what a culture of belonging may look like across six engineering education making spaces in institutions of higher education in the U.S. The research question for this study was: In what ways are the management, instructors, and staff operating engineering education making spaces influencing a culture of belonging (if any) for engineering students? We examined the transcripts of semi-structured interviews of 49 faculty members and 29 members of management/staff of making spaces, using thematic coding. From the data, we identified four themes that described the culture of belonging being createdmore »in these six engineering making spaces: (a) a ‘closed loop’ culture for inclusion, diversity, equity, and access; (b) a ‘transactional, dichotomous’ culture; (c) a ‘band-aid, masquerading’ culture; (d) a potential ‘boundary-crossing’ culture. Our primary conclusion was that created cultures in engineering making spaces are extensions of normative cultures found in traditional engineering classrooms. Additionally, while making spaces were attempting to change this culture in their physical infrastructures, it was deemed that the space leadership needs to expand hiring strategies, the nature of making activities, the ambient/physical appearance of the space, disciplines, and required expertise, to create a truly inclusive and equitable culture of belonging.« less
    Free, publicly-accessible full text available September 1, 2022
  3. Researcher innovation and leadership skills are fundamental to create implementable solutions to pressing societal- and market-based global problems. The Research to Innovation to Society (R2I2S) program is a transformative approach to graduate education, training students at the intersection of research, innovation, and leadership. We detail the design of the program, and a three-year exploratory investigation of its impact at one research university in the western United States. We found that, overall, students who participated in the program realized the value of thinking about their scientific research from a market-need perspective. Students perceived enhanced interest in and understanding of societal andmore »market insights related to their own and other’s research. As well, students developed professional skills in communication, team collaboration, innovation, and entrepreneurial skills. We situate our findings in frameworks concerning the development of emerging professionals and argue for programming for STEM graduate students that extends the deep discipline knowledge-based model of professional development into one inclusive of leadership, communication, and innovation goals.« less
  4. University-based makerspaces are receiving increasing attention as promising innovations that may contribute to the development of future engineers. Using a theory of social boundary spaces, we investigated whether the diverse experiences offered at university-based makerspaces may contribute to students’ learning and development of various “soft” or “21st century” skills that go beyond engineering-specific content knowledge. Through interviews with undergraduate student users at two university-based makerspaces in the United States we identified seven different types of boundary spaces (where multiple communities, and the individuals and activities affiliated with those communities, come together). We identified students engaging in the processes of identification,more »reflection, and coordination, which allowed them to make sense of, and navigate, the various boundary spaces they encountered in the makerspaces. These processes provided students with opportunities to engage with, and learn from, individuals and practices affiliated with various communities and disciplines. These opportunities can lead to students’ development of necessary skills to creatively and collaboratively address interdisciplinary socio-scientific problems. We suggest that university-based makerspaces can offer important developmental experiences for a diverse body of students that may be challenging for a single university department, program, or course to offer. Based on these findings, we recommend university programs and faculty intentionally integrate makerspace activities into undergraduate curricula to support students’ development of skills, knowledge, and practices relevant for engineering as well as 21st century skills more broadly.« less
  5. null (Ed.)
    In the last decade, postsecondary institutions have seen a notable increase in makerspaces on their campuses and the integration of these spaces into engineering programs. Yet research into the efficacy of university-based makerspaces is sparse. We contribute to this nascent body of research in reporting on findings from a phenomenological study on the perceptions of faculty, staff, and students concerning six university-based makerspaces in the United States. We discuss the findings using a framework of heterogeneous engineering (integration of the social and technical aspects of engineering practice). Various physical, climate, and programmatic features of makerspaces were read as affordances formore »students’ development of engineering practices and their continued participation and persistence in engineering. We discuss the potential of makerspaces in helping students develop knowledge, skills, and proclivities that may support their attending to especially wicked societal problems, such as issues of sustainability. We offer implications for makerspace administrators, engineering program leaders, faculty, and staff, as well as those developing and delivering professional development for faculty and staff, to better incorporate makerspaces into the university engineering curriculum.« less
  6. Free, publicly-accessible full text available September 17, 2022
  7. Introduction The increasing demands for a 21st century postsecondary education-- that incorporates the liberal arts, humanities, and social sciences--in contrast to the stasis of engineering curriculum, has catalyzed an engineering education “identity crisis” [1]-[9]. Without an understanding of the engineering norms, practices, and worldviews that engineering students and instructors carry from their courses, there is an increased risk that underrepresentation in engineering will continue to persist. This work aims to expand a previously developed study on engineering professional identity by exploring two unique engineering courses (serving as case studies) at a college of engineering at a western institution in themore »U.S. One course focused on helping engineering students develop technical communication skills while the other course aimed to help underrepresented women in engineering to understand about and plan for careers in engineering. Both cases are uniquely positioned to help engineering education researchers elucidate how professionally-focused and career-planning engineering courses could guide students’ perceptions about engineering.« less
  8. As the popularity of makerspaces in higher education continues to grow, we seek to understand how students perceive these spaces as tools to prepare them for future engineering careers. Introduced in engineering education in early 2000’s, makerspaces have the potential to foster development of 21st century and technical skills through hands-on constructionist learning. The core tenants of the maker mindset include: Growth Through Failure, Collaborative Learning, Creativity and Innovation, and Student Agency
  9. Makerspaces have become a rather common structure within engineering education programs. The spaces are used in a wide range of configurations but are typically intended to facilitate student collaboration, communication, creativity, and critical thinking, essentially giving students the opportunity to learn 21st century skills and develop deeper understanding of the processes of engineering. Makerspace structure, layout, and use has been fairly well researched, yet the impact of makerspaces on student learning is understudied, somewhat per a lack of tools to measure student learning in these spaces. We developed a survey tool to assess undergraduate engineering students’ perceptions and learning inmore »makerspaces, considering levels of students’ motivation, professional identity, engineering knowledge, and belongingness in the context of makerspaces. Our survey consists of multiple positively-phrased (supporting a condition) and some negatively-phrased (refuting a condition) survey items correlated to each of our four constructs. Our final survey contained 60 selected response items including demographic data. We vetted the instrument with an advisory panel for an additional level of validation and piloted the survey with undergraduate engineering students at two universities collecting completed responses from 196 participants. Our reliability analysis and additional statistical calculations revealed our tool was statistically sound and was effectively gathering the data we designed the instrument to measure.« less