skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bowers, Steven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Abstract The generation of ultra-low-noise microwave and mmWave in miniaturized, chip-based platforms can transform communication, radar and sensing systems1–3. Optical frequency division that leverages optical references and optical frequency combs has emerged as a powerful technique to generate microwaves with superior spectral purity than any other approaches4–7. Here we demonstrate a miniaturized optical frequency division system that can potentially transfer the approach to a complementary metal-oxide-semiconductor-compatible integrated photonic platform. Phase stability is provided by a large mode volume, planar-waveguide-based optical reference coil cavity8,9and is divided down from optical to mmWave frequency by using soliton microcombs generated in a waveguide-coupled microresonator10–12. Besides achieving record-low phase noise for integrated photonic mmWave oscillators, these devices can be heterogeneously integrated with semiconductor lasers, amplifiers and photodiodes, holding the potential of large-volume, low-cost manufacturing for fundamental and mass-market applications13
    more » « less