skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brady, Esther"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This dataset originates from a new CESM2 CAM6 perturbed parameter ensemble (PPE) designed to explore climate and hydroclimate dynamics under a wide range of sea surface temperature (SST) conditions. The SST varies from 4 degrees Celsius colder to 16 degrees Celsius warmer than preindustrial levels, encompassing a broad spectrum of mean temperatures spanning the past 65 million years. This dataset offers valuable insights into climate and hydroclimate responses, as well as weather and climate extremes under diverse conditions.The dataset includes results from nine PPE simulations with different SST scenarios: preindustrial (PREI), 4K cooler (M04K), and 4K, 8K, 12K, and 16K warmer (P04K to P16K). For SSTs exceeding 8K warming, sea ice was removed to improve numerical stability. Each PPE set consists of 250 ensemble members, with 45 parameters related to microphysics, convection, turbulence, and aerosols perturbed using Latin Hypercube Sampling. An additional simulation with default parameter settings brings the total to 251 simulations, each running for five years using CAM6.3 (https://github.com/ESCOMP/CAM/tree/cam6_3_026; with additional paleo modifications).Post-processing converted the data into compressed NetCDF-4 format. All 251 runs were concatenated using ncecat to minimize the number of files. For example, the following file contains monthly surface temperature data from the preindustrial PPE: f.c6.F1850.f19_f19.paleo_ppe.sst_prei.ens251/atm/proc/tseries/month_1/f.c6.F1850.f19_f19.paleo_ppe.sst_prei.ens251.cam.h0.TS.000101-000512.ncA detailed variable list [https://rda.ucar.edu/OS/web/datasets/d651038/docs/detailed_vars.txt] can be found in the Documentation Tab.Parameter values are provided in the PPE Parameter File. More details can be found in the paper: Zhu et al. (2025). Investigating the State Dependence of Cloud Feedback Using a Suite of Perturbed Parameter Ensembles, Journal of Climate. 
    more » « less
  2. Abstract. Climate variability in the last millennium (past 1000 years) is dominated by the effects of large-magnitude volcanic eruptions; however, a long-standing mismatch exists between model-simulated and tree-ring-derived surface cooling. Accounting for the self-limiting effects of large sulfur dioxide (SO2) injections and the limitations in tree-ring records, such as lagged responses due to biological memory, reconciles some of the discrepancy, but uncertainties remain, particularly for the largest tropical eruptions. The representation of volcanic forcing in the latest generation of climate models has improved significantly, but most models prescribe the aerosol optical properties rather than using SO2 emissions directly and including interactions between the aerosol, chemistry, and dynamics. Here, we use the UK Earth System Model (UKESM) to simulate the climate of the last millennium (1250–1850 CE) using volcanic SO2 emissions. Averaged across all large-magnitude eruptions, we find similar Northern Hemisphere (NH) summer cooling compared with other last-millennium climate simulations from the Paleoclimate Modelling Intercomparison Project Phase 4 (PMIP4), run with both SO2 emissions and prescribed forcing, and a continued overestimation of surface cooling compared with tree-ring reconstructions. However, for the largest-magnitude tropical eruptions in 1257 (Mt. Samalas) and 1815 (Mt. Tambora), some models, including UKESM1, suggest a smaller NH summer cooling that is in better agreement with tree-ring records. In UKESM1, we find that the simulated volcanic forcing differs considerably from the PMIP4 dataset used in models without interactive aerosol schemes, with marked differences in the hemispheric spread of the aerosol, resulting in lower forcing in the NH when SO2 emissions are used. Our results suggest that, for the largest tropical eruptions, the spatial distribution of aerosol can account for some of the discrepancies between model-simulated and tree-ring-derived cooling. Further work should therefore focus on better resolving the spatial distribution of aerosol forcing for past eruptions. 
    more » « less
  3. We examine results from two transient modeling experiments that simulate the Last Interglacial period (LIG) using the state-of-the-art Community Earth System Model (CESM2), with a focus on climate and ocean changes relevant to the possible collapse of the Antarctic ice sheet. The experiments simulate the early millennia of the LIG warm period using orbital forcing, greenhouse gas concentrations and vegetation appropriate for 127ka; in the first case (127ka) no other changes are made; in the second case (127kaFW), we include a 0.2 Sv freshwater forcing in the North Atlantic. Both are compared with a pre-industrial control simulation (piControl). In the 127ka simulation, the global average temperature is only marginally warmer (0.004 degrees C) than in the piControl. When freshwater forcing is added (127kaFW), there is surface cooling in the NH and warming in the SH, consistent with the bipolar seesaw effect. Near the Antarctic ice sheet, the 127ka simulation generates notable ocean warming (up to 0.4 degrees C) at depths below 200 m compared to the piControl. In contrast, the addition of freshwater in the North Atlantic in the 127kaFW run results in a multi-century subsurface ocean cooling that rebounds slowly over multiple millennia near the Antarctic ice sheet. These results have implications for the thermal forcing (and thereby mass balance) of the Antarctic Ice Sheet. We explore the physical processes that lead to this result and discuss implications for climate forcing of Antarctic ice sheet mass loss during the LIG. 
    more » « less
  4. We examine results from two transient modeling experiments that simulate the Last Interglacial period (LIG) using the state-of-the-art Community Earth System Model (CESM2), with a focus on climate and ocean changes relevant to the possible collapse of the Antarctic ice sheet. The experiments simulate the early millennia of the LIG warm period using orbital forcing, greenhouse gas concentrations and vegetation appropriate for 127ka; in the first case (127ka) no other changes are made; in the second case (127kaFW), we include a 0.2 Sv freshwater forcing in the North Atlantic. Both are compared with a pre-industrial control simulation (piControl). In the 127ka simulation, the global average temperature is only marginally warmer (0.004 degrees C) than in the piControl. When freshwater forcing is added (127kaFW), there is surface cooling in the NH and warming in the SH, consistent with the bipolar seesaw effect. Near the Antarctic ice sheet, the 127ka simulation generates notable ocean warming (up to 0.4 degrees C) at depths below 200 m compared to the piControl. In contrast, the addition of freshwater in the North Atlantic in the 127kaFW run results in a multi-century subsurface ocean cooling that rebounds slowly over multiple millennia near the Antarctic ice sheet. These results have implications for the thermal forcing (and thereby mass balance) of the Antarctic Ice Sheet. We explore the physical processes that lead to this result and discuss implications for climate forcing of Antarctic ice sheet mass loss during the LIG. 
    more » « less
  5. Abstract. We examine results from two transient modeling experiments that simulate the Last Interglacial period (LIG) using the state-of-the-art Community Earth System Model (CESM2), with a focus on climate and ocean changes relevant to the possible collapse of the Antarctic ice sheet. The experiments simulate the early millennia of the LIG warm period using orbital forcing, greenhouse gas concentrations, and vegetation appropriate for 127 ka. In the first case (127ka), no other changes are made; in the second case (127kaFW), we include a 0.2 Sv freshwater forcing in the North Atlantic. Both are compared with a pre-industrial control simulation (piControl). In the 127ka simulation, the global average temperature is only marginally warmer (0.004 °C) than in the piControl. When freshwater forcing is added (127kaFW), there is surface cooling in the Northern Hemisphere (NH) and warming in the Southern Hemisphere (SH), consistent with the bipolar seesaw effect. Near the Antarctic ice sheet, the 127ka simulation generates notable ocean warming (up to 0.4 °C) at depths below 200 m compared to the piControl. In contrast, the addition of freshwater in the North Atlantic in the 127kaFW run results in a multi-century subsurface ocean cooling that rebounds slowly over multiple millennia near the Antarctic ice sheet. These results have implications for the thermal forcing (and thereby mass balance) of the Antarctic ice sheet. We explore the physical processes that lead to this result and discuss implications for climate forcing of Antarctic ice sheet mass loss during the LIG. 
    more » « less
  6. Abrupt climate changes during the last deglaciation have been well preserved in proxy records across the globe. However, one long-standing puzzle is the apparent absence of the onset of the Heinrich Stadial 1 (HS1) cold event around 18 ka in Greenland ice core oxygen isotope δ 18 O records, inconsistent with other proxies. Here, combining proxy records with an isotope-enabled transient deglacial simulation, we propose that a substantial HS1 cooling onset did indeed occur over the Arctic in winter. However, this cooling signal in the depleted oxygen isotopic composition is completely compensated by the enrichment because of the loss of winter precipitation in response to sea ice expansion associated with AMOC slowdown during extreme glacial climate. In contrast, the Arctic summer warmed during HS1 and YD because of increased insolation and greenhouse gases, consistent with snowline reconstructions. Our work suggests that Greenland δ 18 O may substantially underestimate temperature variability during cold glacial conditions. 
    more » « less
  7. null (Ed.)
  8. Abstract Despite tectonic conditions and atmospheric CO 2 levels ( pCO 2 ) similar to those of present-day, geological reconstructions from the mid-Pliocene (3.3-3.0 Ma) document high lake levels in the Sahel and mesic conditions in subtropical Eurasia, suggesting drastic reorganizations of subtropical terrestrial hydroclimate during this interval. Here, using a compilation of proxy data and multi-model paleoclimate simulations, we show that the mid-Pliocene hydroclimate state is not driven by direct CO 2 radiative forcing but by a loss of northern high-latitude ice sheets and continental greening. These ice sheet and vegetation changes are long-term Earth system feedbacks to elevated pCO 2 . Further, the moist conditions in the Sahel and subtropical Eurasia during the mid-Pliocene are a product of enhanced tropospheric humidity and a stationary wave response to the surface warming pattern, which varies strongly with land cover changes. These findings highlight the potential for amplified terrestrial hydroclimate responses over long timescales to a sustained CO 2 forcing. 
    more » « less
  9. null (Ed.)