skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Breitzman, Timothy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. We consider electrostatic interactions in two classes of nanostructures embedded in a three dimensional space: (1) helical nanotubes, and (2) thin films with uniform bending (i.e., constant mean curvature). Starting from the atomic scale with a discrete distribution of dipoles, we obtain the continuum limit of the electrostatic energy; the continuum energy depends on the geometric parameters that define the nanostructure, such as the pitch and twist of the helical nanotubes and the curvature of the thin film. We find that the limiting energy is local in nature. This can be rationalized by noticing that the decay of the dipole kernel is sufficiently fast when the lattice sums run over one and two dimensions, and is also consistent with prior work on dimension reduction of continuum micromagnetic bodies to the thin film limit. However, an interesting contrast between the discrete-to-continuum approach and the continuum dimension reduction approaches is that the limit energy in the latter depends only on the normal component of the dipole field, whereas in the discrete-to-continuum approach, both tangential and normal components of the dipole field contribute to the limit energy. 
    more » « less
  3. In this paper, a symmetry-adapted method is applied to examine the influence of deformation and defects on the electronic structure and band structure in carbon nanotubes. First, the symmetry-adapted approach is used to develop the analog of Bloch waves. Building on this, the technique of perfectly matched layers is applied to develop a method to truncate the computational domain of electronic structure calculations without spurious size effects. This provides an efficient and accurate numerical approach to compute the electronic structure and electromechanics of defects in nanotubes. The computational method is applied to study the effect of twist, stretch, and bending, with and without various types of defects, on the band structure of nanotubes. Specifically, the effect of stretch and twist on band structure in defect-free conducting and semiconducting nanotubes is examined, and the interaction with vacancy defects is elucidated. Next, the effect of localized bending or kinking on the electronic structure is studied. Finally, the paper examines the effect of 5–8–5 Stone–Wales defects. In all of these settings, the perfectly matched layer method enables the calculation of localized non-propagating defect modes with energies in the bandgap of the defect-free nanotube. 
    more » « less