Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Inland waters emit significant amounts of carbon dioxide (CO2) to the atmosphere; however, the global magnitude and source distribution of inland water CO2emissions remain uncertain. These fluxes have previously been “statistically upscaled” by independently estimating dissolved CO2concentrations and gas exchange velocities to calculate fluxes. This scaling, while robust and defensible, has known limitations in representing carbon source limitations and spatial variability. Here, we develop and calibrate a CO2transport model for the continental United States, simulating carbon transport and transformation in >22 million hydraulically connected rivers, lakes, and reservoirs. We estimate 25% lower CO2fluxes compared to upscaling estimates forced by the same observational calibration data. While precise CO2source distribution estimates are limited by the resolution of model parameterizations, our model suggests that stream corridor CO2production dominates over groundwater inputs at the continental scale. Our results further suggest that the lack of observational networks for groundwater CO2and scalable metabolic models of aquatic CO2production remain the most salient barriers to further coupling of our model with other Earth system components.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract The relative capacity for watersheds to eliminate or export reactive constituents has important implications on aquatic ecosystem ecology and biogeochemistry. Removal efficiency depends on factors that affect either the reactivity or advection of a constituent within river networks. Here, we characterized Damköhler number (Da) for dissolved organic carbon (DOC) uptake in global river networks. Da equals the advection to reaction timescale ratio and thus provides a unitless indicator for DOC reaction intensity during transport within river networks. We aim to demonstrate the spatial and temporal patterns and interplays among factors that determine DOC uptake across global river networks. We show that watershed size imposes a primary control on river network DOC uptake due to a three orders of magnitude difference in water residence time (WRT) between the smallest and largest river networks. DOC uptake capacity in tropical river networks is 2–6 times that in temperate and the Arctic river networks, coinciding with larger DOC removals in warm than in cold watersheds. River damming has a profound impact on DOC uptake due to significantly extended WRTs, particularly in temperate watersheds where most constructed dams are situated. Global warming is projected to increase river network DOC uptake by ca. 19% until year 2100 under the RCP4.5 scenario.more » « less
An official website of the United States government
