skip to main content

Search for: All records

Creators/Authors contains: "Brinson, L. Catherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Graphical abstract 
    more » « less
  3. null (Ed.)
    Abstract The inconsistency of polymer indexing caused by the lack of uniformity in expression of polymer names is a major challenge for widespread use of polymer related data resources and limits broad application of materials informatics for innovation in broad classes of polymer science and polymeric based materials. The current solution of using a variety of different chemical identifiers has proven insufficient to address the challenge and is not intuitive for researchers. This work proposes a multi-algorithm-based mapping methodology entitled ChemProps that is optimized to solve the polymer indexing issue with easy-to-update design both in depth and in width. RESTful API is enabled for lightweight data exchange and easy integration across data systems. A weight factor is assigned to each algorithm to generate scores for candidate chemical names and optimized to maximize the minimum value of the score difference between the ground truth chemical name and the other candidate chemical names. Ten-fold validation is utilized on the 160 training data points to prevent overfitting issues. The obtained set of weight factors achieves a 100% test accuracy on the 54 test data points. The weight factors will evolve as ChemProps grows. With ChemProps, other polymer databases can remove duplicate entries and enable a more accurate “search by SMILES” function by using ChemProps as a common name-to-SMILES translator through API calls. ChemProps is also an excellent tool for auto-populating polymer properties thanks to its easy-to-update design. 
    more » « less
  4. Abstract

    For over three decades, the materials tetrahedron has captured the essence of materials science and engineering with its interdependent elements of processing, structure, properties, and performance. As modern computational and statistical techniques usher in a new paradigm of data-intensive scientific research and discovery, the rate at which the field of materials science and engineering capitalizes on these advances hinges on collaboration between numerous stakeholders. Here, we provide a contemporary extension to the classic materials tetrahedron with a dual framework—adapted from the concept of a “digital twin”—which offers a nexus joining materials science and information science. We believe this high-level framework, the materials–information twin tetrahedra (MITT), will provide stakeholders with a platform to contextualize, translate, and direct efforts in the pursuit of propelling materials science and technology forward.

    Impact statement

    This article provides a contemporary reimagination of the classic materials tetrahedron by augmenting it with parallel notions from information science. Since the materials tetrahedron (processing, structure, properties, performance) made its first debut, advances in computational and informational tools have transformed the landscape and outlook of materials research and development. Drawing inspiration from the notion of a digital twin, the materials–information twin tetrahedra (MITT) framework captures a holistic perspective of materials science and engineering in the presence of modern digital tools and infrastructures. This high-level framework incorporates sustainability and FAIR data principles (Findable, Accessible, Interoperable, Reusable)—factors that recognize how systems impact and interact with other systems—in addition to the data and information flows that play a pivotal role in knowledge generation. The goal of the MITT framework is to give stakeholders from academia, industry, and government a communication tool for focusing efforts around the design, development, and deployment of materials in the years ahead.

    Graphic abstract 
    more » « less
  5. Large-language models (LLMs) such as GPT-4 caught the interest of many scientists. Recent studies suggested that these models could be useful in chemistry and materials science. To explore these possibilities, we organized a hackathon. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines. 
    more » « less
    Free, publicly-accessible full text available August 8, 2024
  6. Personal thermal management textile/wearable is an effective strategy to expand the indoor temperature setpoint range to reduce a building’s energy consumption. Usually, textiles/wearables that were engineered for controlling conduction, convection, radiation, or sweat evaporation have been developed separately. Here, we demonstrate a multimodal adaptive wearable with moisture-responsive flaps composed of a nylon/metal heterostructure, which can simultaneously regulate convection, sweat evaporation, and mid-infrared emission to accomplish large and rapid heat transfer tuning in response to human perspiration vapor. We show that the metal layer not only plays a crucial role in low-emissivity radiative heating but also enhances the bimorph actuation performance. The multimodal adaptive mechanism expands the thermal comfort zone by 30.7 and 20.7% more than traditional static textiles and single-modal adaptive wearables without any electricity and energy input, making it a promising design paradigm for personal heat management. 
    more » « less