skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bronfman, Leonardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We use the H41αrecombination line to create templates of the millimeter free–free emission in the ALMA-IMF continuum maps, which allows us to separate it from dust emission. This method complements spectral-index information and extrapolation from centimeter-wavelength maps. We use the derived maps to estimate the properties of up to 34 Hiiregions across the ALMA-IMF protoclusters. The hydrogen ionizing photon rateQ0and spectral types follow the evolutionary trend proposed by Motte et al. The youngest protoclusters lack detectable ionized gas, followed by protoclusters with increasing numbers of OB stars. The totalQ0increases from ∼1045s−1to >1049s−1. We used the adjacent He41αline to measure the relative number abundances of helium, finding values consistent with the Galactic interstellar medium, although a few outliers are discussed. A search for sites of maser amplification of the H41αline returned negative results. We looked for possible correlations between the electron densities, emission measures, andQ0with Hiiregion sizeD. The latter is the best correlated, withQ0∝D2.49 ± 0.18. This favors interpretations in which smaller ultracompact Hiiregions are not necessarily the less dynamically evolved versions of larger ones but rather are ionized by less massive stars. Moderate correlations were found between the dynamical width ΔVdynwithDandQ0. ΔVdynincreases from about 1 to 2 times the ionized-gas sound speed. Finally, an outlier Hiiregion south of W43-MM2 is discussed. We suggest that this source could harbor an embedded stellar or disk wind. 
    more » « less
  2. Abstract One of the most poorly understood aspects of low-mass star formation is how multiple-star systems are formed. Here we present the results of Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations toward a forming quadruple protostellar system, G206.93-16.61E2, in the Orion B molecular cloud. ALMA 1.3 mm continuum emission reveals four compact objects, of which two are Class I young stellar objects and the other two are likely in prestellar phase. The 1.3 mm continuum emission also shows three asymmetric ribbon-like structures that are connected to the four objects, with lengths ranging from ∼500 to ∼2200 au. By comparing our data with magnetohydrodynamic simulations, we suggest that these ribbons trace accretion flows and also function as gas bridges connecting the member protostars. Additionally, ALMA CO J = 2−1 line emission reveals a complicated molecular outflow associated with G206.93-16.61E2, with arc-like structures suggestive of an outflow cavity viewed pole-on. 
    more » « less
  3. null (Ed.)
  4. ABSTRACT The ATOMS, standing for ALMA Three-millimeter Observations of Massive Star-forming regions, survey has observed 146 active star-forming regions with ALMA band 3, aiming to systematically investigate the spatial distribution of various dense gas tracers in a large sample of Galactic massive clumps, to study the roles of stellar feedback in star formation, and to characterize filamentary structures inside massive clumps. In this work, the observations, data analysis, and example science of the ATOMS survey are presented, using a case study for the G9.62+0.19 complex. Toward this source, some transitions, commonly assumed to trace dense gas, including CS J = 2−1, HCO+J = 1−0, and HCN J = 1−0, are found to show extended gas emission in low-density regions within the clump; less than 25 per cent of their emission is from dense cores. SO, CH3OH, H13CN, and HC3N show similar morphologies in their spatial distributions and reveal well the dense cores. Widespread narrow SiO emission is present (over ∼1 pc), which may be caused by slow shocks from large–scale colliding flows or H ii regions. Stellar feedback from an expanding H ii region has greatly reshaped the natal clump, significantly changed the spatial distribution of gas, and may also account for the sequential high-mass star formation in the G9.62+0.19 complex. The ATOMS survey data can be jointly analysed with other survey data, e.g. MALT90, Orion B, EMPIRE, ALMA_IMF, and ALMAGAL, to deepen our understandings of ‘dense gas’ star formation scaling relations and massive protocluster formation. 
    more » « less