skip to main content

Search for: All records

Creators/Authors contains: "Brown, Fraser"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Web applications often handle large amounts of sensitive user data. Modern secure web frameworks protect this data by (1) using declarative languages to specify security policies alongside database schemas and (2) automatically enforcing these policies at runtime. Unfortunately, these frameworks do not handle the very common situation in which the schemas or the policies need to evolve over time—and updates to schemas and policies need to be performed in a carefully coordinated way. Mistakes during schema or policy migrations can unintentionally leak sensitive data or introduce privilege escalation bugs. In this work, we present a domain-specific language (Scooter) for expressing schema and policy migrations, and an associated SMT-based verifier (Sidecar) which ensures that migrations are secure as the application evolves. We describe the design of Scooter and Sidecar and show that our framework can be used to express realistic schemas, policies, and migrations, without giving up on runtime or verification performance.
  2. WebAssembly (Wasm) is a platform-independent bytecode that offers both good performance and runtime isolation. To implement isolation, the compiler inserts safety checks when it compiles Wasm to native machine code. While this approach is cheap, it also requires trust in the compiler's correctness---trust that the compiler has inserted each necessary check, correctly formed, in each proper place. Unfortunately, subtle bugs in the Wasm compiler can break---and have broken---isolation guarantees. To address this problem, we propose verifying memory isolation of Wasm binaries post-compilation. We implement this approach in VeriWasm, a static offline verifier for native x86-64 binaries compiled from Wasm; we prove the verifier's soundness, and find that it can detect bugs with no false positives. Finally, we describe our deployment of VeriWasm at Fastly.
  3. We describe and evaluate an extensible bug-finding tool, Sys, designed to automatically find security bugs in huge codebases, even when easy-to-find bugs have been already picked clean by years of aggressive automatic checking. Sys uses a two-step approach to find such tricky errors. First, it breaks down large---tens of millions of lines---systems into small pieces using user-extensible static checkers to quickly find and mark potential errorsites. Second, it uses user-extensible symbolic execution to deeply examine these potential errorsites for actual bugs. Both the checkers and the system itself are small (6KLOC total). Sys is flexible, because users must be able to exploit domain- or system-specific knowledge in order to detect errors and suppress false positives in real codebases. Sys finds many security bugs (51 bugs, 43 confirmed) in well-checked code---the Chrome and Firefox web browsers---and code that some symbolic tools struggle with---the FreeBSD operating system. Sys's most interesting results include: an exploitable, cash bountied CVE in Chrome that was fixed in seven hours (and whose patch was backported in two days); a trio of bountied bugs with a CVE in Firefox; and a bountied bug in Chrome's audio support.
  4. We present VeRA, a system for verifying the range analysis pass in browser just-in-time (JIT) compilers. Browser developers write range analysis routines in a subset of C++, and verification developers write infrastructure to verify custom analysis properties. Then, VeRA automatically verifies the range analysis routines, which browser developers can integrate directly into the JIT. We use VeRA to translate and verify Firefox range analysis routines, and it detects a new, confirmed bug that has existed in the browser for six years.