skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brown, Michael K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Abstract A foundational principle in the study of modules over standard graded polynomial rings is that geometric positivity conditions imply vanishing of Betti numbers. The main goal of this paper is to determine the extent to which this principle extends to the nonstandard ‐graded case. In this setting, the classical arguments break down, and the results become much more nuanced. We introduce a new notion of Castelnuovo–Mumford regularity and employ exterior algebra techniques to control the shapes of nonstandard ‐graded minimal free resolutions. Our main result reveals a unique feature in the nonstandard ‐graded case: the possible degrees of the syzygies of a graded module in this setting are controlled not only by its regularity, but also by its depth. As an application of our main result, we show that given a simplicial projective toric variety and a module over its coordinate ring, the multigraded Betti numbers of are contained in a particular polytope when satisfies an appropriate positivity condition. 
    more » « less
  4. Abstract We give a short new proof of a recent result of Hanlon-Hicks-Lazarev about toric varieties. As in their work, this leads to a proof of a conjecture of Berkesch-Erman-Smith on virtual resolutions and to a resolution of the diagonal in the simplicial case. 
    more » « less
  5. null (Ed.)