skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A short proof of the Hanlon-Hicks-Lazarev Theorem
Abstract We give a short new proof of a recent result of Hanlon-Hicks-Lazarev about toric varieties. As in their work, this leads to a proof of a conjecture of Berkesch-Erman-Smith on virtual resolutions and to a resolution of the diagonal in the simplicial case.  more » « less
Award ID(s):
2409776 2302373
PAR ID:
10510729
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
12
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The entropic doubling of a random variable taking values in an abelian group is a variant of the notion of the doubling constant of a finite subset of , but it enjoys somewhat better properties; for instance, it contracts upon applying a homomorphism. In this paper we develop further the theory of entropic doubling and give various applications, including: (1) A new proof of a result of Pálvölgyi and Zhelezov on the “skew dimension” of subsets of with small doubling; (2) A new proof, and an improvement, of a result of the second author on the dimension of subsets of with small doubling; (3) A proof that the Polynomial Freiman–Ruzsa conjecture over implies the (weak) Polynomial Freiman–Ruzsa conjecture over . 
    more » « less
  2. Abstract Szemerédi 's Regularity Lemma is a powerful tool in graph theory. It asserts that all large graphs admit bounded partitions of their edge sets, most classes of which consist of uniformly distributed edges. The original proof of this result was nonconstructive, and a constructive proof was later given by Alon, Duke, Lefmann, Rödl, and Yuster. Szemerédi's Regularity Lemma was extended to hypergraphs by various authors. Frankl and Rödl gave one such extension in the case of 3‐uniform hypergraphs, which was later extended tok‐uniform hypergraphs by Rödl and Skokan. W.T. Gowers gave another such extension, using a different concept of regularity than that of Frankl, Rödl, and Skokan. Here, we give a constructive proof of a regularity lemma for hypergraphs. 
    more » « less
  3. Abstract Arinkin and Gaitsgory defined a category oftempered‐modules on that is conjecturally equivalent to the category of quasi‐coherent (not ind‐coherent!) sheaves on . However, their definition depends on the auxiliary data of a point of the curve; they conjectured that their definition is independent of this choice. Beraldo has outlined a proof of this conjecture that depends on some technology that is not currently available. Here we provide a short, unconditional proof of the Arinkin–Gaitsgory conjecture. 
    more » « less
  4. Abstract In light of a gap found by Krupiński, we give a new proof of associativity for the Morley (or “nonforking”) product of invariant measures in NIP theories. 
    more » « less
  5. Abstract The main result of this paper is a complete proof of a new Lieb–Thirring-type inequality for Jacobi matrices originally conjectured by Hundertmark and Simon. In particular, it is proved that the estimate on the sum of eigenvalues does not depend on the off-diagonal terms as long as they are smaller than their asymptotic value. An interesting feature of the proof is that it employs a technique originally used by Hundertmark–Laptev–Weidl concerning sums of singular values for compact operators. This technique seems to be novel in the context of Jacobi matrices. 
    more » « less