- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
32
- Author / Contributor
- Filter by Author / Creator
-
-
Bu, Fan (5)
-
Volfovsky, Alexander (2)
-
Xu, Jason (2)
-
Adam, Yagoub (1)
-
Adamiak, Ryszard W (1)
-
Aiello, Allison E (1)
-
Aiello, Allison E. (1)
-
Annor, George (1)
-
Antczak, Maciej (1)
-
Badepally, Nagendar Goud (1)
-
Batey, Robert T (1)
-
Baulin, Eugene F (1)
-
Boinski, Pawel (1)
-
Boniecki, Michal J (1)
-
Bruggeman, Peter (1)
-
Bujnicki, Janusz M (1)
-
Carpenter, Kristy A (1)
-
Chacon, Jose (1)
-
Chen, Shi-Jie (1)
-
Chiu, Wah (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary We develop a stochastic epidemic model progressing over dynamic networks, where infection rates are heterogeneous and may vary with individual-level covariates. The joint dynamics are modeled as a continuous-time Markov chain such that disease transmission is constrained by the contact network structure, and network evolution is in turn influenced by individual disease statuses. To accommodate partial epidemic observations commonly seen in real-world data, we propose a stochastic EM algorithm for inference, introducing key innovations that include efficient conditional samplers for imputing missing infection and recovery times which respect the dynamic contact network. Experiments on both synthetic and real datasets demonstrate that our inference method can accurately and efficiently recover model parameters and provide valuable insight at the presence of unobserved disease episodes in epidemic data.more » « lessFree, publicly-accessible full text available December 31, 2025
-
Schneider, Alissa A.; Bu, Fan; Ismail, Baraem P. (, Current Research in Food Science)
-
Bu, Fan; Nayak, Gaurav; Bruggeman, Peter; Annor, George; Ismail, Baraem P (, Food Chemistry)
-
Bu, Fan; Adam, Yagoub; Adamiak, Ryszard W; Antczak, Maciej; de_Aquino, Belisa_Rebeca H; Badepally, Nagendar Goud; Batey, Robert T; Baulin, Eugene F; Boinski, Pawel; Boniecki, Michal J; et al (, Nature Methods)Free, publicly-accessible full text available December 2, 2025
-
Bu, Fan; Aiello, Allison E.; Xu, Jason; Volfovsky, Alexander (, Journal of the American Statistical Association)null (Ed.)