We present a new method for analysing stochastic epidemic models under minimal assumptions. The method, dubbed dynamic survival analysis (DSA), is based on a simple yet powerful observation, namely that population-level mean-field trajectories described by a system of partial differential equations may also approximate individual-level times of infection and recovery. This idea gives rise to a certain non-Markovian agent-based model and provides an agent-level likelihood function for a random sample of infection and/or recovery times. Extensive numerical analyses on both synthetic and real epidemic data from foot-and-mouth disease in the UK (2001) and COVID-19 in India (2020) show good accuracy and confirm the method’s versatility in likelihood-based parameter estimation. The accompanying software package gives prospective users a practical tool for modelling, analysing and interpreting epidemic data with the help of the DSA approach.
more »
« less
Stochastic EM algorithm for partially observed stochastic epidemics with individual heterogeneity
Summary We develop a stochastic epidemic model progressing over dynamic networks, where infection rates are heterogeneous and may vary with individual-level covariates. The joint dynamics are modeled as a continuous-time Markov chain such that disease transmission is constrained by the contact network structure, and network evolution is in turn influenced by individual disease statuses. To accommodate partial epidemic observations commonly seen in real-world data, we propose a stochastic EM algorithm for inference, introducing key innovations that include efficient conditional samplers for imputing missing infection and recovery times which respect the dynamic contact network. Experiments on both synthetic and real datasets demonstrate that our inference method can accurately and efficiently recover model parameters and provide valuable insight at the presence of unobserved disease episodes in epidemic data.
more »
« less
- PAR ID:
- 10593292
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Biostatistics
- Volume:
- 26
- Issue:
- 1
- ISSN:
- 1468-4357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It is well recognized that population heterogeneity plays an important role in the spread of epidemics. While individual variations in social activity are often assumed to be persistent, that is, constant in time, here we discuss the consequences of dynamic heterogeneity. By integrating the stochastic dynamics of social activity into traditional epidemiological models, we demonstrate the emergence of a new long timescale governing the epidemic, in broad agreement with empirical data. Our stochastic social activity model captures multiple features of real-life epidemics such as COVID-19, including prolonged plateaus and multiple waves, which are transiently suppressed due to the dynamic nature of social activity. The existence of a long timescale due to the interplay between epidemic and social dynamics provides a unifying picture of how a fast-paced epidemic typically will transition to an endemic state.more » « less
-
Epidemic containment has long been a crucial task in many high-stake application domains, ranging from public health to misinformation dissemination. Existing studies for epidemic containment are primarily focused on undirected networks, assuming that the infection rate is constant throughout the contact network regardless of the strength and direction of contact. However, such an assumption can be unrealistic given the asymmetric nature of the real-world infection process. To tackle the epidemic containment problem in directed networks, simply grafting the methods designed for undirected network can be problematic, as most of the existing methods rely on the orthogonality and Lipschitz continuity in the eigensystem of the underlying contact network, which do not hold for directed networks. In this work, we derive a theoretical analysis on the general epidemic threshold condition for directed networks and show that such threshold condition can be used as an optimization objective to control the spread of the disease. Based on the epidemic threshold, we propose an asymptotically greedy algorithm DINO (DIrected NetwOrk epidemic containment) to identify the most critical nodes for epidemic containment. The proposed algorithm is evaluated on real-world directed networks, and the results validate its effectiveness and efficiency.more » « less
-
Abstract Individuals’ socio-demographic and economic characteristics crucially shape the spread of an epidemic by largely determining the exposure level to the virus and the severity of the disease for those who got infected. While the complex interplay between individual characteristics and epidemic dynamics is widely recognised, traditional mathematical models often overlook these factors. In this study, we examine two important aspects of human behaviour relevant to epidemics: contact patterns and vaccination uptake. Using data collected during the COVID-19 pandemic in Hungary, we first identify the dimensions along which individuals exhibit the greatest variation in their contact patterns and vaccination uptake. We find that generally higher socio-economic groups of the population have a higher number of contacts and a higher vaccination uptake with respect to disadvantaged groups. Subsequently, we propose a data-driven epidemiological model that incorporates these behavioural differences. Finally, we apply our model to analyse the fourth wave of COVID-19 in Hungary, providing valuable insights into real-world scenarios. By bridging the gap between individual characteristics and epidemic spread, our research contributes to a more comprehensive understanding of disease dynamics and informs effective public health strategies.more » « less
-
Abstract A better understanding of various patterns in the coronavirus disease 2019 (COVID-19) spread in different parts of the world is crucial to its prevention and control. Motivated by the previously developed Global Epidemic and Mobility (GLEaM) model, this paper proposes a new stochastic dynamic model to depict the evolution of COVID-19. The model allows spatial and temporal heterogeneity of transmission parameters and involves transportation between regions. Based on the proposed model, this paper also designs a two-step procedure for parameter inference, which utilizes the correlation between regions through a prior distribution that imposes graph Laplacian regularization on transmission parameters. Experiments on simulated data and real-world data in China and Europe indicate that the proposed model achieves higher accuracy in predicting the newly confirmed cases than baseline models.more » « less
An official website of the United States government

