Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This dataset includes the concentrations of dissolved inorganic macronutrients (phosphate, nitrate plus nitrite (N+N), silicic acid, and nitrite), chlorophyll a and phaeophytin, dissolved trace metals (iron, manganese, nickel, zinc, copper), and labile dissolved nickel, as well as pH and total alkalinity measurements, from discrete depth profile samples collected on the FeOA cruise SKQ202209S on R/V Sikuliaq in the Northeast Pacific from June to July 2022. This project investigates the effects of ocean acidification on the associations between iron and organic ligands in seawater and on iron bioavailability to marine phytoplankton communities. The project used a combination of shipboard incubation experiments and depth profiles to characterize iron speciation and cycling across coastal upwelling, oligotrophic open ocean, and iron-limited subarctic oceanographic regimes in the NE Pacific. Surface seawater was incubated at pH of 8.1, 7.6, and 7.1 with natural iron and with dissolved iron amendments in order to investigate interactions between pH and iron bioavailability across the different regimes. Understanding how pH influences iron and its relationship with ligands provides important information for assessing the impacts of ocean acidification on primary production and biogeochemical processes.more » « less
-
This dataset includes trace metal (iron, manganese, cobalt, nickel, copper, zinc, cadmium, lead) and macronutrient (nitrate&nitrite, nitrite, phosphate, silicic acid) concentration data from incubation experiments conducted on board the RRS Discovery during the EXPORTS North Atlantic campaign at the Porcupine Abyssal Plain-Sustained Observatory (PAP-SO) site (DY131). In these experiments, additions of macronutrients (N, P, Si) and Fe were used to assess the level of Si, N, and Fe stress being experienced by the phytoplankton and to contextualize taxa-specific metatranscriptome responses for resolving gene expression profiles in the in-situ communities. This research project focuses on the vertical export of the carbon associated with a major group of phytoplankton, the diatoms in the North Atlantic near the Porcupine Abyssal Plain. The major objective is to understand how diatom community composition and the prevailing nutrient conditions create taxonomic differences in metabolic state that combine to direct diatom taxa to different carbon export pathways. The focus is on diatoms, given their large contribution to global marine primary productivity and carbon export which translates into a significant contribution to the biogeochemical cycling of carbon (C), nitrogen (N), phosphorus (P), iron (Fe) and silicon (Si). It is hypothesized that the type and degree of diatom physiological stress are vital aspects of ecosystem state that drive export. To test this hypothesis, combined investigator expertise in phytoplankton physiology, genomics, and trace element chemistry is used to assess the rates of nutrient use and the genetic composition and response of diatom communities, with measurements of silicon and iron stress to evaluate stress as a predictor of the path of diatom carbon export. The EXPORTS field campaign in the North Atlantic sampled a retentive eddy over nearly a month in May 2021, which coincided with the decline of the North Atlantic Spring Bloom.more » « less
-
This dataset includes data from nutrient manipulation experiments aimed at relieving or inducing nutrient stress in phytoplankton and quantifying these responses using metatranscriptomic sequencing. Experiments were conducted by adding key macronutrients (N, P, Si) and Fe in different combinations over different growth periods, simulating potential alleviation of in situ nutrient stress or the induction of nutrient stress. Experiments were conducted on the EXports Processes in the Oceans from RemoTe Sensing (EXPORTS) cruise DY131 in the North Atlantic during May of 2021.more » « less
-
The GEOTRACES program has greatly expanded measurements of dissolved trace metal concentrations across ocean basins, but to understand the behavior and cycling of metals and their impacts on primary productivity, we must understand the chemical forms in which they are present in the environment. Organic ligands play a central role in the speciation and cycling of trace metals in the marine environment, controlling their chemical reactivity and bioavailability. Here, we present an overview of the contributions the GEOTRACES program has made to understanding ocean metal speciation through advancing our knowledge of the distribution, sources, and sinks of metal-binding organic ligands across the global ocean, particularly for iron. Detailed assessments and intercalibration of the speciation methods most commonly applied have allowed integration of metal-binding ligand measurements across datasets. Work to characterize specific ligand groups within the wider pool of dissolved organic matter, along with their sources and sinks, is starting to unravel the role of metal-binding organic ligands in global biogeochemical cycles. Recent advances in complementary analytical techniques using liquid chromatography and mass spectrometry present a molecular picture of metal speciation and bioavailability—and also pose new questions. Moving forward, we need to address knowledge gaps in our understanding of how metal speciation and complexation relates to bioavailability in order to recognize the impacts of ocean metal distributions and cycling on marine productivity and the global carbon cycle.more » « lessFree, publicly-accessible full text available May 23, 2025
-
Abstract Each spring, the North Atlantic experiences one of the largest open‐ocean phytoplankton blooms in the global ocean. Diatoms often dominate the initial phase of the bloom with succession driven by exhaustion of silicic acid. The North Atlantic was sampled over 3.5 weeks in spring 2021 following the demise of the main diatom bloom, allowing mechanisms that sustain continued diatom contributions to be examined. Diatom biomass was initially relatively high with biogenic silica concentrations up to 2.25 μmol Si L−1. A low initial silicic acid concentration of 0.1–0.3 μM imposed severe Si limitation of silica production and likely limited the diatom growth rate. Four storms over the next 3.5 weeks entrained silicic acid into the mixed layer, relieving growth limitation, but uptake limitation persisted. Silica production was modest and dominated by the >5.0 μm size fraction although specific rates were highest in the 0.6–5.0 μm size fraction over most of the cruise. Silica dissolution averaged 68% of silica production. The resupply of silicic acid via storm entrainment and silica dissolution supported a cumulative post‐bloom silica production that was 32% of that estimated during the main bloom event. Diatoms contributed significantly to new and to primary production after the initial bloom, possibly dominating both. Diatom contribution to organic‐carbon export was also significant at 40%–70%. Thus, diatoms can significantly contribute to regional biogeochemistry following initial silicic acid depletion, but that contribution relies on physical processes that resupply the nutrient to surface waters.more » « lessFree, publicly-accessible full text available July 1, 2025
-
This dataset includes the concentrations and conditional stability constants of iron-binding organic ligands in samples collected during an extension study of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) project and measured by competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV). These samples originated from a spring melt field campaign conducted in Utqiaġvik, Alaska. This campaign was designed when the MOSAiC expedition could no longer accommodate spring melt trace metal work. The melt season was a key period of our effort during MOSAiC and necessary for addressing our proposed hypotheses. Using facilities in Utqiaġvik hosted by Ukpeaǵvik Iñupiat Corporation (UIC), we studied sea ice processes during the spring melt cycle from April – June of 2021. Four UAF Scientists participated in the field campaign. During that time, sea ice, snow and water samples were obtained from homogenous, flat, landfast ice at high (2-3 times a week) temporal resolution.more » « less
-
The method of competitive ligand exchange followed by adsorptive cathodic stripping voltammetry (CLEAdCSV) allows for the determination of dissolved iron (DFe) organic speciation parameters, i.e., ligand concentration (LFe) and conditional stability constant (log Kcond Fe′L ). Investigation of DFe organic speciation by CLEAdCSV has been conducted in a wide range of marine systems, but aspects of its application pose challenges that have yet to be explicitly addressed. Here, we present a set of observations and recommendations to work toward establishing best practice for DFe organic speciation measurements using the added ligand salicylaldoxime (SA). We detail conditioning procedures to ensure a stable AdCSV signal and discuss the processes at play during conditioning. We also present step-by-step guidelines to simplify CLE-AdCSV data treatment and interpretation using the softwares ECDSoft and ProMCC and a custom spreadsheet. We validate our application and interpretation methodology with the model siderophore deferoxamine B (DFO-B) in a natural seawater sample. The reproducibility of our application and interpretation methodology was evaluated by running duplicate titrations on 19 samples, many of which had been refrozen prior to the duplicate analysis. Nevertheless, 50% of the duplicate analyses agreed within 10% of their relative standard deviation (RSD), and up to 80% within 25% RSD, for both LFe and log Kcond Fe′L . Finally, we compared the sequential addition and equilibration of DFe and SA with overnight equilibration after simultaneous addition of DFe and SA on 24 samples. We found a rather good agreement between both procedures, with 60% of samples within 25% RSD for LFe (and 43% of samples for log KcondFe′L ), and it was not possible to predict differences in LFe or log KcondFe′L based on the method applied, suggesting specific association/dissociation kinetics for different ligand assemblages. Further investigation of the equilibration kinetics against SA may be helpful as a potential way to distinguish natural ligand assemblages.more » « less
-
This dataset includes the total dissolved, dissolved labile, and soluble nickel concentration results determined in water column samples collected using a trace-metal clean CTD rosette, or an inflatable dinghy, during four cruises in the Bermuda Atlantic Time-series Study (BATS) region in March, May, August, and November 2019. The samples and associated data were collected for the Bermuda Atlantic Iron Time-series (BAIT) project (GEOTRACES Process Study GApr13). Post-cruise sample analyses were performed at the University of South Florida (labile dissolved nickel) and Old Dominion University (dissolved nickel, soluble nickel).more » « less
-
This dataset includes the concentrations of dissolved inorganic macronutrients (phosphate, nitrate plus nitrite (N+N), silicic acid, and nitrite), chlorophyll a and phaeophytin, and particulate organic nitrogen and carbon measured shipboard in samples collected from phytoplankton shipboard incubation experiments conducted on the FeOA cruise SKQ202209S on R/V Sikuliaq in the Northeast Pacific from June to July 2022. This project investigates the effects of ocean acidification on the associations between iron and organic ligands in seawater and on iron bioavailability to marine phytoplankton communities. The project used a combination of shipboard incubation experiments and depth profiles to characterize iron speciation and cycling across coastal upwelling, oligotrophic open ocean, and iron-limited subarctic oceanographic regimes in the NE Pacific. Surface seawater was incubated at pH of 8.1, 7.6, and 7.1 with natural iron and with dissolved iron amendments in order to investigate interactions between pH and iron bioavailability across the different regimes. Understanding how pH influences iron and its relationship with ligands provides important information for assessing the impacts of ocean acidification on primary production and biogeochemical processes.more » « less