Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.Central bars and spirals are known to impact significantly the evolution of their host galaxies, both in terms of dynamics and star formation. Their typically different pattern speeds cause them to regularly overlap, which induces fluctuations in bar parameters. Aims.In this paper, we analyze both numerical simulations of disk galaxies and observational data to study the effect of bar-spiral physical overlap on stellar radial migration and star formation in the bar vicinity, as a function of time and galactic azimuth. Methods.We studied three different numerical models, two of which are in a cosmological context, alongside APOGEE DR17 data and the WISE catalog of Galactic HII regions. Results.We find that periodic boosts in stellar radial migration occur when the bar and spiral structures overlap. This mechanism causes net inward migration along the bar leading side, while stars along the bar trailing side and minor axis are shifted outward. The signature of bar-spiral-induced migration is seen between the bar inner Lindbald resonance and well outside its corotation, beyond which other drivers take over. We also find that, in agreement with simulations, APOGEE DR17 stars born at the bar vicinity (which are mostly metal rich) can migrate out to the solar radius while remaining on cold orbits. For the Milky Way, 13% of stars in the solar vicinity with an eccentricity <0.5 were born inside the bar, compared to 5–20% in the simulations. Bar-spiral reconnections also result in periodic starbursts at the bar ends with an enhancement of up to a factor of 4, depending on the strength of the spiral structure. Similarly to the migration bursts, these do not always happen simultaneously at the two sides of the bar, which hints at the importance of odd spiral modes. Data from the WISE catalog suggest this phenomenon is also relevant in our own Galaxy.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract As microbiome research has progressed, it has become clear that most, if not all, eukaryotic organisms are hosts to microbiomes composed of prokaryotes, other eukaryotes, and viruses. Fungi have only recently been considered holobionts with their own microbiomes, as filamentous fungi have been found to harbor bacteria (including cyanobacteria), mycoviruses, other fungi, and whole algal cells within their hyphae. Constituents of this complex endohyphal microbiome have been interrogated using multi-omic approaches. However, a lack of tools, techniques, and standardization for integrative multi-omics for small-scale microbiomes (e.g., intracellular microbiomes) has limited progress towards investigating and understanding the total diversity of the endohyphal microbiome and its functional impacts on fungal hosts. Understanding microbiome impacts on fungal hosts will advance explorations of how “microbiomes within microbiomes” affect broader microbial community dynamics and ecological functions. Progress to date as well as ongoing challenges of performing integrative multi-omics on the endohyphal microbiome is discussed herein. Addressing the challenges associated with the sample extraction, sample preparation, multi-omic data generation, and multi-omic data analysis and integration will help advance current knowledge of the endohyphal microbiome and provide a road map for shrinking microbiome investigations to smaller scales.more » « less
-
Fungal communities are primary decomposers of detritus, including coarse woody debris (CWD). We investigated the succession of fungal decomposer communities in CWD through different stages of decay in the wide-ranging and early successional tree species Populus grandidentata (bigtooth aspen). We compared shifts in fungal communities over time with concurrent changes in substrate chemistry and in bacterial community composition, the latter deriving from an earlier study of the same system. We found that fungal communities were highly dynamic during the stages of CWD decay, rapidly colonizing standing dead trees and gradually changing in composition until the late stages of decomposed wood were integrated into soil organic matter. Fungal communities were most similar to neighboring stages of decay, with fungal diversity, abundance, and enzyme activity positively related to percent nitrogen, irrespective of decay class. In contrast to other studies, we found that species diversity remained unchanged across decay classes. Differences in enzyme profiles across CWD decay stages mirrored changes in carbon recalcitrance, as B-D-xylosidase, peroxidase, and Leucyl aminopeptidase activity increased as decomposition progressed. Finally, fungal and bacterial gene abundances were stable and increased, respectively, with the extent of CWD decay, suggesting that fungal-driven decomposition was associated with shifting community composition and associated enzyme functions rather than fungal quantities.more » « less
-
Members of the fungal genusMorchellaare widely known for their important ecological roles and significant economic value. In this study, we used amplicon and genome sequencing to characterize bacterial communities associated with sexual fruiting bodies from wild specimens, as well as vegetative mycelium and sclerotia obtained fromMorchellaisolates grownin vitro. These investigations included diverse representatives from both Elata and EsculentaMorchellaclades. Unique bacterial community compositions were observed across the various structures examined, both within and across individualMorchellaisolates or specimens. However, specific bacterial taxa were frequently detected in association with certain structures, providing support for an associated core bacterial community. Bacteria from the genusPseudomonasandRalstoniaconstituted the core bacterial associates ofMorchellamycelia and sclerotia, while other genera (e.g.,Pedobacterspp.,Deviosaspp., andBradyrhizobiumspp.) constituted the core bacterial community of fruiting bodies. Furthermore, the importance ofPseudomonasas a key member of the bacteriome was supported by the isolation of severalPseudomonasstrains from mycelia duringin vitrocultivation. Four of the six mycelial-derivedPseudomonasisolates shared 16S rDNA sequence identity with amplicon sequences recovered directly from the examined fungal structures. Distinct interaction phenotypes (antagonistic or neutral) were observed in confrontation assays between these bacteria and variousMorchellaisolates. Genome sequences obtained from thesePseudomonasisolates revealed intriguing differences in gene content and annotated functions, specifically with respect to toxin-antitoxin systems, cell adhesion, chitinases, and insecticidal toxins. These genetic differences correlated with the interaction phenotypes. This study provides evidence thatPseudomonasspp. are frequently associated withMorchellaand these associations may greatly impact fungal physiology.more » « less
-
Free, publicly-accessible full text available December 1, 2026
-
null (Ed.)Abstract We formed the Collection of Zoosporic Eufungi at the University of Michigan (CZEUM) in 2018 as a cryopreserved fungal collection consolidating the University of Maine Culture Collection (UMCC, or JEL), the University of Alabama Chytrid Culture Collection (UACCC), and additional zoosporic eufungal accessions. The CZEUM is established as a community resource containing 1045 cryopreserved cultures of Chytridiomycota , Monoblepharidomycota , and Blastocladiomycota , with 52 cultures being ex-type strains. We molecularly characterized 431 cultures by amplifying the majority of the rDNA operon in a single reaction, yielding an average fragment length of 4739 bp. We sequenced multiplexed samples with an Oxford Nanopore Technology MinION device and software, and demonstrate the method is accurate by producing sequences identical to published Sanger sequences. With these data, we generated a phylogeny of 882 zoosporic eufungi strains to produce the most comprehensive phylogeny of these taxa to date. The CZEUM is thus largely characterized by molecular data, which can guide instructors and researchers on future studies of these organisms. Cultures from the CZEUM can be purchased through an online portal.more » « less
An official website of the United States government
