skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buder, Eugene"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stressful conversation is a frequently occurring stressor in our daily life. Stressors not only adversely affect our physical and mental health but also our relationships with family, friends, and coworkers. In this paper, we present a model to automatically detect stressful conversations using wearable physiological and inertial sensors. We conducted a lab and a field study with cohabiting couples to collect ecologically valid sensor data with temporally-precise labels of stressors. We introduce the concept of stress cycles, i.e., the physiological arousal and recovery, within a stress event. We identify several novel features from stress cycles and show that they exhibit distinguishing patterns during stressful conversations when compared to physiological response due to other stressors. We observe that hand gestures also show a distinct pattern when stress occurs due to stressful conversations. We train and test our model using field data collected from 38 participants. Our model can determine whether a detected stress event is due to a stressful conversation with an F1-score of 0.83, using features obtained from only one stress cycle, facilitating intervention delivery within 3.9 minutes since the start of a stressful conversation. 
    more » « less
  2. Differential privacy concepts have been successfully used to protect anonymity of individuals in population-scale analysis. Sharing of mobile sensor data, especially physiological data, raise different privacy challenges, that of protecting private behaviors that can be revealed from time series of sensor data. Existing privacy mechanisms rely on noise addition and data perturbation. But the accuracy requirement on inferences drawn from physiological data, together with well-established limits within which these data values occur, render traditional privacy mechanisms inapplicable. In this work, we define a new behavioral privacy metric based on differential privacy and propose a novel data substitution mechanism to protect behavioral privacy. We evaluate the efficacy of our scheme using 660 hours of ECG, respiration, and activity data collected from 43 participants and demonstrate that it is possible to retain meaningful utility, in terms of inference accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors. 
    more » « less