skip to main content

Search for: All records

Creators/Authors contains: "Burns, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Compact-object binary mergers consisting of one neutron star and one black hole (NSBHs) have long been considered promising progenitors for gamma-ray bursts, whose central engine remains poorly understood. Using gravitational-wave constraints on the population-level NSBH mass and spin distributions we find that at most 20 Gpc−3 yr−1of gamma-ray bursts in the local universe can have NSBH progenitors.

    more » « less
  2. Abstract

    Core-collapse supernova explosions play a wide role in astrophysics by producing compact remnants (neutron stars or black holes) and the synthesis and injection of many heavy elements into their host galaxy. Because they are produced in some of the most extreme conditions in the universe, they can also probe physics in extreme conditions (matter at nuclear densities and extreme temperatures and magnetic fields). To quantify the impact of supernovae on both fundamental physics and our understanding of the universe, we must leverage a broad set of observables of this engine. In this paper, we study a subset of these probes using a suite of one-dimensional, parameterized mixing models: ejecta remnants from supernovae, ultraviolet, optical and infrared light curves, and transient gamma-ray emission. We review the other diagnostics and show how the different probes tie together to provide a more clear picture of the supernova engine. Join us in improving and evolving this document through active community engagement. Instructions are provided at this link:

    more » « less
  3. Free, publicly-accessible full text available August 17, 2024
  4. Abstract

    GW170817 is the only gravitational-wave event for which a confirmedγ-ray counterpart, GRB 170817A, has been detected. Here, we present a method to search for another type ofγ-ray signal, aγ-ray burst precursor, associated with a compact binary merger. If emitted shortly before the coalescence, a high-energy electromagnetic (EM) flash travels through a highly dynamical and relativistic environment, created by the two compact objects orbiting each other. Thus, the EM signal arriving at an Earth observer could present a somewhat predictable time-dependent modulation. We describe a targeted search method for light curves exhibiting such a modulation, parameterized by the observer-frame component masses and binary merger time, using Fermi-GBM data. The sensitivity of the method is assessed based on simulated signals added to GBM data. The method is then applied to a selection of potentially interesting compact binary mergers detected during the second (O2) and third (O3) observing runs of Advanced LIGO and Advanced Virgo. We find no significant modulatedγ-ray precursor signal associated with any of the considered events.

    more » « less
  5. Abstract Dirty fireballs are a hypothesized class of relativistic massive-star explosions with an initial Lorentz factor Γ init below the Γ init ∼ 100 required to produce a long-duration gamma-ray burst (LGRB), but which could still produce optical emission resembling LGRB afterglows. Here we present the results of a search for on-axis optical afterglows using the Zwicky Transient Facility (ZTF). Our search yielded seven optical transients that resemble on-axis LGRB afterglows in terms of their red colors ( g − r > 0 mag), faint host galaxies ( r > 23 mag), rapid fading ( dr / dt > 1 mag day −1 ), and in some cases X-ray and radio emission. Spectroscopy of the transient emission within a few days of discovery established cosmological distances (redshift z = 0.876 to 2.9) for six of the seven events, tripling the number of afterglows with redshift measurements discovered by optical surveys without a γ -ray trigger. A likely associated LGRB (GRB 200524A, GRB 210204A, GRB 210212B, and GRB 210610B) was identified for four events (ZTF 20abbiixp/AT 2020kym, ZTF 21aagwbjr/AT 2021buv, ZTF 21aakruew/AT 2021cwd, and ZTF 21abfmpwn/AT 2021qbd) post facto, while three (ZTF 20aajnksq/AT 2020blt, ZTF 21aaeyldq/AT 2021any, and ZTF 21aayokph/AT 2021lfa) had no detected LGRB counterpart. The simplest explanation for the three “orphan” events is that they were regular LGRBs missed by high-energy satellites owing to detector sensitivity and duty cycle, although it is possible that they were intrinsically subluminous in γ -rays or viewed slightly off-axis. We rule out a scenario in which dirty fireballs have a similar energy per solid angle to LGRBs and are an order of magnitude more common. In addition, we set the first direct constraint on the ratio of the opening angles of the material producing γ -rays and the material producing early optical afterglow emission, finding that they must be comparable. 
    more » « less
  6. Abstract The Fermi Gamma-ray Burst Monitor (GBM) triggers on-board in response to ∼40 short gamma-ray bursts (SGRBs) per year; however, their large localization regions have made the search for optical counterparts a challenging endeavour. We have developed and executed an extensive program with the wide field of view of the Zwicky Transient Facility (ZTF) camera, mounted on the Palomar 48 inch Oschin telescope (P48), to perform target-of-opportunity (ToO) observations on 10 Fermi-GBM SGRBs during 2018 and 2020–2021. Bridging the large sky areas with small field-of-view optical telescopes in order to track the evolution of potential candidates, we look for the elusive SGRB afterglows and kilonovae (KNe) associated with these high-energy events. No counterpart has yet been found, even though more than 10 ground-based telescopes, part of the Global Relay of Observatories Watching Transients Happen (GROWTH) network, have taken part in these efforts. The candidate selection procedure and the follow-up strategy have shown that ZTF is an efficient instrument for searching for poorly localized SGRBs, retrieving a reasonable number of candidates to follow up and showing promising capabilities as the community approaches the multi-messenger era. Based on the median limiting magnitude of ZTF, our searches would have been able to retrieve a GW170817-like event up to ∼200 Mpc and SGRB afterglows to z = 0.16 or 0.4, depending on the assumed underlying energy model. Future ToOs will expand the horizon to z = 0.2 and 0.7, respectively. 
    more » « less
  7. Abstract We present the IXPE observation of GRB 221009A, which includes upper limits on the linear polarization degree of both prompt and afterglow emission in the soft X-ray energy band. GRB 221009A is an exceptionally bright gamma-ray burst (GRB) that reached Earth on 2022 October 9 after traveling through the dust of the Milky Way. The Imaging X-ray Polarimetry Explorer (IXPE) pointed at GRB 221009A on October 11 to observe, for the first time, the 2–8 keV X-ray polarization of a GRB afterglow. We set an upper limit to the polarization degree of the afterglow emission of 13.8% at a 99% confidence level. This result provides constraints on the jet opening angle and the viewing angle of the GRB, or alternatively, other properties of the emission region. Additionally, IXPE captured halo-rings of dust-scattered photons that are echoes of the GRB prompt emission. The 99% confidence level upper limit to the prompt polarization degree depends on the background model assumption, and it ranges between ∼55% and ∼82%. This single IXPE pointing provides both the first assessment of X-ray polarization of a GRB afterglow and the first GRB study with polarization observations of both the prompt and afterglow phases. 
    more » « less
    Free, publicly-accessible full text available March 1, 2024
  8. null (Ed.)