Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Synopsis Like many scientific disciplines, the field of reproductive biology is subject to biases in terminology and research foci. For example, females are often described as coy and passive players in reproductive behaviors and are termed “promiscuous” if they engage in extra-pair copulations. Males on the other hand are viewed as actively holding territories and fighting with other males. Males are termed “multiply mating” if they mate with multiple females. Similarly, textbooks often illustrate meiosis as it occurs in males but not females. This edition of Integrative and Comparative Biology (ICB) includes a series of papers that focus on reproduction from the female perspective. These papers represent a subset of the work presented in our symposium and complementary sessions on female reproductive biology. In this round table discussion, we use a question and answer format to leverage the diverse perspectives and voices involved with the symposium in an exploration of theoretical, cultural, pedagogical, and scientific issues related to the study of female biology. We hope this dialog will provide a stepping-stone toward moving reproductive science and teaching to a more inclusive and objective framework.more » « less
-
Abstract The integration of ecological niche modelling into phylogeographic analyses has allowed for the identification and testing of potential refugia under a hypothesis‐based framework, where the expected patterns of higher genetic diversity in refugial populations and evidence of range expansion of nonrefugial populations are corroborated with empirical data. In this study, we focus on a montane‐restricted cryophilic harvestman,Sclerobunus robustus, distributed throughout the heterogeneous Southern Rocky Mountains and Intermontane Plateau of southwestern North America. We identified hypothetical refugia using ecological niche models (ENMs) across three time periods, corroborated these refugia with population genetic methods using double‐digest RAD‐seq data and conducted population‐level phylogenetic and divergence dating analyses. ENMs identify two large temporally persistent regions in the mid‐latitude highlands. Genetic patterns support these two hypothesized refugia with higher genetic diversity within refugial populations and evidence for range expansion in populations found outside hypothesized refugia. Phylogenetic analyses identify five to six genetically divergent, geographically cohesive clades ofS. robustus. Divergence dating analyses suggest that these separate refugia date to the Pliocene and that divergence between clades pre‐dates the late Pleistocene glacial cycles, while diversification within clades was likely driven by these cycles. Population genetic analyses reveal effects of both isolation by distance (IBD) and isolation by environment (IBE), with IBD more important in the continuous mountainous portion of the distribution, while IBE was stronger in the populations inhabiting the isolated sky islands of the south. Using model‐based coalescent approaches, we find support for postdivergence migration between clades from separate refugia.more » « less
-
Abstract Next‐generation sequencing technologies now allow researchers of non‐model systems to perform genome‐based studies without the requirement of a (often unavailable) closely related genomic reference. We evaluated the role of restriction endonuclease (RE) selection in double‐digest restriction‐site‐associatedDNAsequencing (ddRADseq) by generating reduced representation genome‐wide data using four differentREcombinations. Our expectation was thatREselections targeting longer, more complex restriction sites would recover fewer loci thanREwith shorter, less complex sites. We sequenced a diverse sample of non‐model arachnids, including five congeneric pairs of harvestmen (Opiliones) and four pairs of spiders (Araneae). Sample pairs consisted of either conspecifics or closely related congeneric taxa, and in total 26 sample pair analyses were tested. Sequence demultiplexing, read clustering and variant calling were performed in thepyRADprogram. The 6‐base pair cutterEcoRIcombined with methylated site‐specific 4‐base pair cutterMspIproduced, on average, the greatest numbers of intra‐individual loci and shared loci per sample pair. As expected, the number of shared loci recovered for a sample pair covaried with the degree of genetic divergence, estimated with cytochrome oxidase I sequences, although this relationship was non‐linear. Our comparative results will prove useful in guiding protocol selection for ddRADseq experiments on many arachnid taxa where reference genomes, even from closely related species, are unavailable.more » « less
An official website of the United States government
