skip to main content

Search for: All records

Creators/Authors contains: "Bush, Jeffrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 18, 2025
  2. Abstract

    The Institute for Student‐AI Teaming (iSAT) addresses the foundational question:how to promote deep conceptual learning via rich socio‐collaborative learning experiences for all students?—a question that is ripe for AI‐based facilitation and has the potential to transform classrooms. We advance research in speech, computer vision, human‐agent teaming, computer‐supported collaborative learning, expansive co‐design, and the science of broadening participation to design and study next generation AI technologies (called AI Partners) embedded in student collaborative learning teams in coordination with teachers. Our institute ascribes to theoretical perspectives that aim to create a normative environment of widespread engagement through responsible design of technology, curriculum, and pedagogy in partnership with K–12 educators, racially diverse students, parents, and other community members.

    more » « less
    Free, publicly-accessible full text available March 1, 2025
  3. null (Ed.)
    Engaging in physical computing activities involving both hard- ware and software provides a hands-on introduction to computer science. The move to remote learning for primary and secondary schools during the 2020-2021 school year due to COVID-19 made implementing physical computing activities especially challenging. However, it is important that these activities are not simply eliminated from the curriculum. This paper explores how a unit centered around students investigating how programmable sensors that can support data-driven scientific inquiry was collaboratively adapted for remote instruction. A case study of one teacher’s experience implementing the unit with a group of middle school students (ages 11 to 14) in her STEM elective class examines how her students could still engage in computational thinking practices around data and programming. The discussion includes both the challenges and unexpected affordances of engaging in physical computing activities remotely that emerged from her implementation. 
    more » « less
  4. This paper compares student outcomes from 75 K-12 teachers who participated in either online, blended, or face-to-face professional development design to support teacher implementation of a programming curriculum during the regular school day. The results are based on survey responses collected over two years from 4,832 students. With only one exception, the results showed no negative student outcomes when comparing student survey results from teachers who participated in online professional development compared to students of teachers who participated in face-to-face professional development. Students who had teachers who participated in face-to-face professional development, however, expressed stronger interest in designing their own games at home. These results suggest that online professional development that is designed to support K-12 teacher classroom implementation of CS education curricula is a viable model with respect to student outcomes. Recommendations for the design of online curricula for CS education are discussed. 
    more » « less