skip to main content


This content will become publicly available on March 1, 2025

Title: From learning optimization to learner flourishing: Reimagining AI in Education at the Institute for Student‐AI Teaming (iSAT)
Abstract

The Institute for Student‐AI Teaming (iSAT) addresses the foundational question:how to promote deep conceptual learning via rich socio‐collaborative learning experiences for all students?—a question that is ripe for AI‐based facilitation and has the potential to transform classrooms. We advance research in speech, computer vision, human‐agent teaming, computer‐supported collaborative learning, expansive co‐design, and the science of broadening participation to design and study next generation AI technologies (called AI Partners) embedded in student collaborative learning teams in coordination with teachers. Our institute ascribes to theoretical perspectives that aim to create a normative environment of widespread engagement through responsible design of technology, curriculum, and pedagogy in partnership with K–12 educators, racially diverse students, parents, and other community members.

 
more » « less
Award ID(s):
2019805
NSF-PAR ID:
10499524
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
AI Magazine
Date Published:
Journal Name:
AI Magazine
Volume:
45
Issue:
1
ISSN:
0738-4602
Page Range / eLocation ID:
61 to 68
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The EngageAI Institute focuses on AI‐driven narrative‐centered learning environments that create engaging story‐based problem‐solving experiences to support collaborative learning. The institute's research has three complementary strands. First, the institute creates narrative‐centered learning environments that generate interactive story‐based problem scenarios to elicit rich communication, encourage coordination, and spark collaborative creativity. Second, the institute creates virtual embodied conversational agent technologies with multiple modalities for communication (speech, facial expression, gesture, gaze, and posture) to support student learning. Embodied conversational agents are driven by advances in natural language understanding, natural language generation, and computer vision. Third, the institute is creating an innovative multimodal learning analytics framework that analyzes parallel streams of multimodal data derived from students’ conversations, gaze, facial expressions, gesture, and posture as they interact with each other, with teachers, and with embodied conversational agents. Woven throughout the institute's activities is a strong focus on ethics, with an emphasis on creating AI‐augmented learning that is deeply informed by considerations of fairness, accountability, transparency, trust, and privacy. The institute emphasizes broad participation and diverse perspectives to ensure that advances in AI‐augmented learning address inequities in STEM. The institute brings together a multistate network of universities, diverse K‐12 school systems, science museums, and nonprofit partners. Key to all of these endeavors is an emphasis on diversity, equity, and inclusion.

     
    more » « less
  2. Abstract  
    more » « less
  3. Abstract

    The National Science Foundation (NSF) Artificial Intelligence (AI) Institute for Edge Computing Leveraging Next Generation Networks (Athena) seeks to foment a transformation in modern edge computing by advancing AI foundations, computing paradigms, networked computing systems, and edge services and applications from a completely new computing perspective. Led by Duke University, Athena leverages revolutionary developments in computer systems, machine learning, networked computing systems, cyber‐physical systems, and sensing. Members of Athena form a multidisciplinary team from eight universities. Athena organizes its research activities under four interrelated thrusts supporting edge computing: Foundational AI, Computer Systems, Networked Computing Systems, and Services and Applications, which constitute an ambitious and comprehensive research agenda. The research tasks of Athena will focus on developing AI‐driven next‐generation technologies for edge computing and new algorithmic and practical foundations of AI and evaluating the research outcomes through a combination of analytical, experimental, and empirical instruments, especially with target use‐inspired research. The researchers of Athena demonstrate a cohesive effort by synergistically integrating the research outcomes from the four thrusts into three pillars: Edge Computing AI Systems, Collaborative Extended Reality (XR), and Situational Awareness and Autonomy. Athena is committed to a robust and comprehensive suite of educational and workforce development endeavors alongside its domestic and international collaboration and knowledge transfer efforts with external stakeholders that include both industry and community partnerships.

     
    more » « less
  4. Abstract

    In response to Li, Reigh, He, and Miller's commentary,Can we and should we use artificial intelligence for formative assessment in science, we argue that artificial intelligence (AI) is already being widely employed in formative assessment across various educational contexts. While agreeing with Li et al.'s call for further studies on equity issues related to AI, we emphasize the need for science educators to adapt to the AI revolution that has outpaced the research community. We challenge the somewhat restrictive view of formative assessment presented by Li et al., highlighting the significant contributions of AI in providing formative feedback to students, assisting teachers in assessment practices, and aiding in instructional decisions. We contend that AI‐generated scores should not be equated with the entirety of formative assessment practice; no single assessment tool can capture all aspects of student thinking and backgrounds. We address concerns raised by Li et al. regarding AI bias and emphasize the importance of empirical testing and evidence‐based arguments in referring to bias. We assert that AI‐based formative assessment does not necessarily lead to inequity and can, in fact, contribute to more equitable educational experiences. Furthermore, we discuss how AI can facilitate the diversification of representational modalities in assessment practices and highlight the potential benefits of AI in saving teachers’ time and providing them with valuable assessment information. We call for a shift in perspective, from viewing AI as a problem to be solved to recognizing its potential as a collaborative tool in education. We emphasize the need for future research to focus on the effective integration of AI in classrooms, teacher education, and the development of AI systems that can adapt to diverse teaching and learning contexts. We conclude by underlining the importance of addressing AI bias, understanding its implications, and developing guidelines for best practices in AI‐based formative assessment.

     
    more » « less
  5. Recent years have seen growing recognition of the importance of enabling K-12 students to learn computer science. Meanwhile, artificial intelligence, a field of computer science, has with the potential to profoundly reshape society. This has generated increasing demand for fostering an AI-literate populace. However, there is little work exploring how to introduce K-12 students to AI and how to support K-12 teachers in integrating AI into their classrooms. In this work, we explore how to introduce AI learning experiences into upper elementary classrooms (student ages 8 to 11). With a focus on integrating AI and life science, we present initial work on a collaborative game-based learning environment that features rich problem-based learning scenarios that enable students to gain experience with AI applied toward solving real-world life-science problems. 
    more » « less