Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work analyzes and develops some fundamental results for attitude consensus control of a network of rigid-body vehicles, considered a multi-agent rigid body system (MARBS). The system is analyzed using a full rigid body dynamics model on TSO(3) for each vehicle (agent) in the network. Therefore, the state space of the system is TSO(3)^N, where N is the number of vehicles. Attitude synchronization control laws for each vehicle to reach a consensus attitude with zero angular velocity for a particular type of network are obtained, using a Morse-Lyapunov function. Some fundamental results on equilibria of the network under these attitude consensus control laws are obtained. We show that unlike cooperative control of multi-agent systems with highly simplified dynamics models for agents, like point particles or unicycles where the state space of the dynamics is modeled as a vector space, there are multiple equilibrium solutions possible for attitude consensus control laws for a MARBS with dynamics on TSO(3)^N. Further, the number of equilibria depends on the network graph topology. This is followed by numerical simulation results for two different network graphs, which show this network control framework to be effective in obtaining attitude consensus.more » « lessFree, publicly-accessible full text available July 8, 2026
-
In this paper, finite-time attitude consensus control laws for multi-agent rigid body systems are presented using rotation matrices. The control objective is to stabilize the relative configurations in a finite convergence time. First, the control design is done on the kinematic level where the angular velocities are the control signals. Next, the design is conducted on the dynamic level in the framework of the tangent bundle TSO(3) associated with SO(3), where the torques implement the feedback control of relative attitudes and angular velocities. The Lyapunov-based almost global finite-time stability of the consensus subspace is demonstrated for both cases. Finally, numerical simulations are provided to verify the effectiveness of the proposed consensus control algorithms.more » « less
-
Motivated by real-world applications with intermittent sensor data, an extended Kalman filter is formulated as a hybrid system and constructive conditions on its parameters guaranteeing an asymptotic stability property are provided. The dynamical properties of the estimation error are first characterized infinitesimally so to yield bounds on the rate of convergence and overshoot that depend on the parameters. By recasting the problem as the stabilization of a compact set, robustness properties of the proposed algorithm in the presence of disturbances in the system dynamics as well as measurement noise in the output are established. The proposed strategy is applied to spacecraft relative motion control with position-only measurements.more » « less
An official website of the United States government
