- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Butcher, Nathan (1)
-
Faucher-Giguère, Claude-André (1)
-
Grudić, Michael Y (1)
-
Hopkins, Philip F (1)
-
Kereš, Dušan (1)
-
Ma, Xiangcheng (1)
-
Murray, Norman (1)
-
Wetzel, Andrew (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Radiative feedback (RFB) from stars plays a key role in galaxies, but remains poorly-understood. We explore this using high-resolution, multi-frequency radiation-hydrodynamics (RHD) simulations from the Feedback In Realistic Environments (FIRE) project. We study ultra-faint dwarf through Milky Way mass scales, including H+He photo-ionization; photo-electric, Lyman Werner, Compton, and dust heating; and single+multiple scattering radiation pressure (RP). We compare distinct numerical algorithms: ray-based LEBRON (exact when optically-thin) and moments-based M1 (exact when optically-thick). The most important RFB channels on galaxy scales are photo-ionization heating and single-scattering RP: in all galaxies, most ionizing/far-UV luminosity (∼1/2 of lifetime-integrated bolometric) is absorbed. In dwarfs, the most important effect is photo-ionization heating from the UV background suppressing accretion. In MW-mass galaxies, meta-galactic backgrounds have negligible effects; but local photo-ionization and single-scattering RP contribute to regulating the galactic star formation efficiency and lowering central densities. Without some RFB (or other “rapid” FB), resolved GMCs convert too-efficiently into stars, making galaxies dominated by hyper-dense, bound star clusters. This makes star formation more violent and “bursty” when SNe explode in these hyper-clustered objects: thus, including RFB “smoothes” SFHs. These conclusions are robust to RHD methods, but M1 produces somewhat stronger effects. Like in previous FIRE simulations, IR multiple-scattering is rare (negligible in dwarfs, $$\sim 10\%$$ of RP in massive galaxies): absorption occurs primarily in “normal” GMCs with AV ∼ 1.more » « less
An official website of the United States government
