ABSTRACT It remains a major challenge to derive a theory of cloud-scale ($$\lesssim100$$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∼100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically $$10\!-\!30\,{\rm Myr}$$, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities $$\Sigma _{\rm H_2}\ge 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$$, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at $$\Sigma _{\rm H_2}\le 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$$ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75–90 per cent of the cloud lifetime), GMCs disperse within just $$1\!-\!5\,{\rm Myr}$$ once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4–10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H ii regions are the fundamental units undergoing these lifecycles, with mean separations of $$100\!-\!300\,{{\rm pc}}$$ in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles.
more »
« less
Radiative Stellar Feedback in Galaxy Formation: Methods and Physics
Abstract Radiative feedback (RFB) from stars plays a key role in galaxies, but remains poorly-understood. We explore this using high-resolution, multi-frequency radiation-hydrodynamics (RHD) simulations from the Feedback In Realistic Environments (FIRE) project. We study ultra-faint dwarf through Milky Way mass scales, including H+He photo-ionization; photo-electric, Lyman Werner, Compton, and dust heating; and single+multiple scattering radiation pressure (RP). We compare distinct numerical algorithms: ray-based LEBRON (exact when optically-thin) and moments-based M1 (exact when optically-thick). The most important RFB channels on galaxy scales are photo-ionization heating and single-scattering RP: in all galaxies, most ionizing/far-UV luminosity (∼1/2 of lifetime-integrated bolometric) is absorbed. In dwarfs, the most important effect is photo-ionization heating from the UV background suppressing accretion. In MW-mass galaxies, meta-galactic backgrounds have negligible effects; but local photo-ionization and single-scattering RP contribute to regulating the galactic star formation efficiency and lowering central densities. Without some RFB (or other “rapid” FB), resolved GMCs convert too-efficiently into stars, making galaxies dominated by hyper-dense, bound star clusters. This makes star formation more violent and “bursty” when SNe explode in these hyper-clustered objects: thus, including RFB “smoothes” SFHs. These conclusions are robust to RHD methods, but M1 produces somewhat stronger effects. Like in previous FIRE simulations, IR multiple-scattering is rare (negligible in dwarfs, $$\sim 10\%$$ of RP in massive galaxies): absorption occurs primarily in “normal” GMCs with AV ∼ 1.
more »
« less
- PAR ID:
- 10184324
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- ISSN:
- 0035-8711
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We characterize mass, momentum, energy, and metal outflow rates of multiphase galactic winds in a suite of FIRE-2 cosmological ‘zoom-in’ simulations from the Feedback in Realistic Environments (FIRE) project. We analyse simulations of low-mass dwarfs, intermediate-mass dwarfs, Milky Way-mass haloes, and high-redshift massive haloes. Consistent with previous work, we find that dwarfs eject about 100 times more gas from their interstellar medium (ISM) than they form in stars, while this mass ‘loading factor’ drops below one in massive galaxies. Most of the mass is carried by the hot phase (>105 K) in massive haloes and the warm phase (103−105 K) in dwarfs; cold outflows (<103 K) are negligible except in high-redshift dwarfs. Energy, momentum, and metal loading factors from the ISM are of order unity in dwarfs and significantly lower in more massive haloes. Hot outflows have 2−5 × higher specific energy than needed to escape from the gravitational potential of dwarf haloes; indeed, in dwarfs, the mass, momentum, and metal outflow rates increase with radius whereas energy is roughly conserved, indicating swept up halo gas. Burst-averaged mass loading factors tend to be larger during more powerful star formation episodes and when the inner halo is not virialized, but we see effectively no trend with the dense ISM gas fraction. We discuss how our results can guide future controlled numerical experiments that aim to elucidate the key parameters governing galactic winds and the resulting associated preventative feedback.more » « less
-
Abstract Most simulations of galaxies and massive giant molecular clouds (GMCs) cannot explicitly resolve the formation (or predict the main-sequence masses) of individual stars. So they must use some prescription for the amount of feedback from an assumed population of massive stars (e.g. sampling the initial mass function, IMF). We perform a methods study of simulations of a star-forming GMC with stellar feedback from UV radiation, varying only the prescription for determining the luminosity of each stellar mass element formed (according to different IMF sampling schemes). We show that different prescriptions can lead to widely varying (factor of ∼3) star formation efficiencies (on GMC scales) even though the average mass-to-light ratios agree. Discreteness of sources is important: radiative feedback from fewer, more-luminous sources has a greater effect for a given total luminosity. These differences can dominate over other, more widely recognized differences between similar literature GMC-scale studies (e.g. numerical methods, cloud initial conditions, presence of magnetic fields). Moreover the differences in these methods are not purely numerical: some make different implicit assumptions about the nature of massive star formation, and this remains deeply uncertain in star formation theory.more » « less
-
ABSTRACT The relevance of some galactic feedback mechanisms, in particular cosmic-ray (CR) feedback and the hydrogen ionizing radiation field, has been challenging to definitively describe in a galactic context, especially far outside the galaxy in the circumgalactic medium (CGM). Theoretical and observational uncertainties prevent conclusive interpretations of multiphase CGM properties derived from ultraviolet (UV) diagnostics. We conduct three-dimensional magnetohydrodynamic simulations of a section of a galactic disc with star formation and feedback, including radiative heating from stars, a UV background, and CR feedback. We utilize the temperature phases present in our simulations to generate Cloudy models to derive spatially and temporally varying synthetic UV diagnostics. We find that radiative effects without additional heating mechanisms are not able to produce synthetic diagnostics in the observed ranges. For low CR diffusivity $$\kappa _{\rm {cr}}=10^{28} \rm {cm}^2 \rm {s}^{-1}$$, CR streaming heating in the outflow helps our synthetic line ratios roughly match observed ranges by producing transitional temperature gas (T ∼ 105–106 K). High CR diffusivity $$\kappa _{\rm {cr}}=10^{29} \rm {cm}^2 \rm {s}^{-1}$$, with or without CR streaming heating, produced transitional temperature gas. The key parameter controlling the production of this gas phase remains unclear, as the different star formation history and outflow evolution itself influences these diagnostics. Our work demonstrates the use of UV plasma diagnostics to differentiate between galactic/circumgalactic feedback models.more » « less
-
Abstract Extended, old, and round stellar halos appear to be ubiquitous around high-mass dwarf galaxies (108.5<M⋆/M⊙< 109.6) in the observed universe. However, it is unlikely that these dwarfs have undergone a sufficient number of minor mergers to form stellar halos that are composed of predominantly accreted stars. Here, we demonstrate that FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulations are capable of producing dwarf galaxies with realistic structures, including both a thick disk and round stellar halo. Crucially, these stellar halos are formed in situ, largely via the outward migration of disk stars. However, there also exists a large population of “nondisky” dwarfs in FIRE-2 that lack a well-defined disk/halo and do not resemble the observed dwarf population. These nondisky dwarfs tend to be either more gas-poor or to have burstier recent star formation histories than the disky dwarfs, suggesting that star formation feedback may be preventing disk formation. Both classes of dwarfs underscore the power of a galaxy’s intrinsic shape—which is a direct quantification of the distribution of the galaxy’s stellar content—to interrogate the feedback implementation in simulated galaxies.more » « less
An official website of the United States government

