skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Butcher, Ray J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The 1:1 cocrystal of 5-fluorocytosine (5FC) and 4-hydroxybenzaldehyde (4HB), C4H4FN3O·C7H6O2has been synthesized and its structure characterized by single-crystal X-ray diffraction and Hirshfeld surface analysis. The compound crystallizes in the monoclinicP21/cspace group. A robust supramolecular architecture is stabilized by N—H...O, N—H...N, C—H...O and C—H...F hydrogen bonds, formingR22(8),R44(22),R66(32), andR88(34) ring motifs. The N—H...O and N—H...N hydrogen bonds form strong directional interactions, contributing to theR22(8) andR88(34) motifs through dimeric and extended ring structures. O—H...O interactions link 5FC and 4HB molecules, generating anR66(32) ring that enhances the packing. Weaker C—H...F bonds help form theR44(22) tetrameric motif, supporting the overall three-dimensional supramolecular framework. Additionally, C—F...π interactions between the fluorine atom and the aromatic ring add further to the crystal cohesion. Hirshfeld surface analysis and two-dimensional fingerprint plots confirm that O...H/H...O contacts are the most significant, highlighting the central role of hydrogen bonding in the stability and organization of the crystal structure. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. 2,4,6-Triaminopyrimidine is an interesting and challenging molecule due to the presence of multiple hydrogen-bond donors and acceptors. Its noncovalent interactions with a variety of carboxylic acids provide several supramolecular aggregates with frequently occurring molecular synthons. The present work focuses on the supramolecular interactions of 2,4,6-triaminopyrimidinium 3-(indol-3-yl)propionate–3-(indol-3-yl)propionic acid (1/1), C4H8N5+·C11H10NO2·C11H11NO2, (I), 2,4,6-triaminopyrimidinium 2-(indol-3-yl)acetate, C4H8N5+·C10H8NO2, (II), 2,4,6-triaminopyrimidinium 5-bromothiophene-2-carboxylate, C4H8N5+·C5H2BrO2S, (III), and 2,4,6-triaminopyrimidinium 5-chlorothiophene-2-carboxylate, C4H8N5+·C5H2ClO2S, (IV). All four salts exhibit robust homomeric and heteromericR22(8) ring motifs. Salts (I) and (II) develop sextuple [in (I)] and quadruple [in (I) and (II)] hydrogen-bonded arrays through fused-ring motifs. Salt (II) exhibits a rosette-like architecture. Salt (IV) is isostructural and isomorphous with salt (III), exhibiting an identical crystal structure with a different composition and an identical supramolecular architecture. In salts (III) and (IV), a linear hetero-tetrameric motif is formed and, in addition, both salts exhibit halogen–π interactions which enhance the crystal stability. All four salts develop a supramolecular hydrogen-bonded pattern facilitated by several N—H...O and N—H...N hydrogen bonds with multiple furcated donors and acceptors. 
    more » « less
  3. In a quest to understand bio-inspired interactions of SO2with hosts, we have observed the lone pair⋯π interaction between the aromatic ring and O of SO2(3.11 Å), in addition to the interaction between S of SO2and metal-bound thiolate (2.63 Å). 
    more » « less
  4. The title compound, C 18 H 17 N 3 O 3 S·C 2 H 6 OS, crystallizes in the monoclinic space group P 2 1 /c . In the crystal, C 1 1 (9) chains of C—H...O interactions are formed, propogating in the c -axis direction. The N—H hydrogen atom forms a strong hydrogen bond with the oxygen atom of a DMSO solvate molecule. 
    more » « less