Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Research Experiences for Teachers (RET) programs are a burgeoning approach to engage teachers in STEM (science, technology, engineering, mathematics) research that they can translate into their K‐12 classrooms. Despite an increase in studies of RETs, there is a need for comparison of RET and non‐RET teachers' student outcomes. This mixed methods, quasi‐experimental comparison study, using a revised third‐generation activity theory framework, investigates how an RET program for preservice and early career STEM teachers impacted participating teachers and their students up to 8 years after RET participation. Specifically, we conducted a matched comparison of student achievement data from students of nine RET teachers versus many non‐RET comparison teachers within the same districts (n = 830–1132 students). We also investigated student and teacher perceptions of classroom practices through surveys (n = 576 students) and interviews (15 teacher interviews). Omnibus tests revealed no statistically significant differences by treatment in math or science achievement. However, students of the RET teachers reported stronger perceptions of STEM career awareness, greater value for learning STEM subjects, and a greater propensity to persist in STEM course tasks (three of the five constructs measured). This was consistent with teacher interview responses in which RET teachers spoke about STEM career awareness in a broader context for understanding the value of STEM in society, and also discussed struggles in research and attempts to bring this mindset to their students, which may have resulted in greater student engagement in their courses. Implications for teacher education and for supporting science and engineering practices in STEM classrooms are discussed along with recommendations for further research on the impacts of RET programs guided by a revised third‐generation activity theory framework informed by this work.more » « lessFree, publicly-accessible full text available January 2, 2026
-
IntroductionThere is a critical need to develop innovative educational strategies that engage youth in meaningful mathematics learning, particularly students from groups that have been historically marginalized in science, technology, engineering, and mathematics (STEM). In this study, we explore youths’ participation in two collaborative projects from the Growing Mathletes curriculum which combines baseball contexts and mathematics. Our goal was to understand the potential of these projects to support youths’ engagement with mathematical ideas and practices, and the extent to which youth leveraged a range of resources, including prior experiences and funds of knowledge, to inform their decisions and understanding. MethodsThe Design a Stadium and Baseball Team Roster projects were implemented in two afterschool setting sites and two summer program sites with 102 youth of all genders in grades 3 to 8. Data sources included video recordings of youth participation in the project, project artifacts, and youth interviews. ResultsWe found the projects contained specific features that supported youths’ engagement in three specific mathematical practices: (1) make sense of problems and persevere in solving them, (2) reason abstractly and quantitatively, and (3) construct viable arguments and critique the reasoning of others. Additionally, there is evidence that while engaging in these projects youth drew on their own funds of knowledge to inform their decisions and understanding. ConclusionOur findings point to key implications for researchers, educators, and curriculum developers in informal STEM learning spaces.more » « lessFree, publicly-accessible full text available August 21, 2025
-
We describe our year-long astronomy program to engage middle and high school students with visual impairments (VI). The program bridges STEM skills acquired in school with out-of-school experiences to build student capacity for recognizing and pursuing STEM-related higher education and careers. The program combines mentorship experiences with a Project-Based Learning (PBL) curriculum that focuses on NGSS science and engineering practices and content. The paper begins with a description of unique 3D tactile models developed for the program. We then briefly describe recruitment and demographics of participating students with VI. The main part of the paper describes the 12-month PBL curriculum and connections with NGSS science and engineering practices and content focus areas. The full curriculum and implementation time line are provided in the supplemental material. External and internal evaluations of the program are described. Internally we evaluate the performance of our participating students in the areas of retention, communication, energy/enthusiasm, and responses to curriculum prompts. A rubric is developed to evaluate submitted assignments. Scores are provided and discussed from both a scientist evaluator and teacher evaluators. We conclude with a discussion and summary of crucial elements that contributed to increased retention/engagement, improved communication, and prolonged enthusiasm in STEM activities.more » « less
-
Surviving Extinction is an interactive, adaptive, digital learning experience through which students learn about the history of vertebrate evolution over the last 350 million years. This experience is self-contained, providing students with immediate feedback. It is designed to be used in a wide range of educational settings from junior high school (∼12 years old) to university level. Surviving Extinction ’s design draws on effective aspects of existing virtual field trip-based learning experiences. Most important among these is the capacity for students to learn through self-directed virtual explorations of simulated historical ecosystems and significant modern-day geologic field sites. Surviving Extinction also makes significant innovations beyond what has previously been done in this area, including extensive use of gamified elements such as collectibles and hidden locations. Additionally, it blends scientifically accurate animations with captured media via a user interface that presents an attractive, engaging, and immersive experience. Surviving Extinction has been field-tested with students at the undergraduate, high school, and pre-high school levels to assess how well it achieves the intended learning outcomes. In all settings we found significant gains pre- to post-activity on a knowledge survey with medium to large effect sizes. This evidence of learning is further supported with data from the gamified elements such as the number of locations discovered and total points earned. Surviving Extinction is freely available for use and detailed resources for educators are provided. It is appropriate for a range of undergraduate courses that cover the history of life on Earth, including ones from a biology, ecology, or geology perspective and courses for either majors or non-majors. Additionally, at the high school level, Surviving Extinction is directly appropriate to teaching adaptation, one of the disciplinary core ideas in the Next Generation Science Standards. Beyond providing this resource to the educational community, we hope that the design ideas demonstrated in Surviving Extinction will influence future development of interactive digital learning experiences.more » « less
-
In efforts to increase scientific literacy and enhance the preparation of learners to pursue careers in science, there are growing opportunities for students and teachers to engage in scientific research experiences, including course-based undergraduate research experiences (CUREs), undergraduate research experiences (UREs), and teacher research experiences (TREs). Prior literature reviews detail a variety of models, benefits, and challenges and call for the continued examination of program elements and associated impacts. This paper reports a comprehensive review of 307 papers published between 2007 and 2017 that include CURE, URE, and TRE programs, with a special focus on research experiences for K–12 teachers. A research-supported conceptual model of science research experiences was used to develop a coding scheme, including participant demographics, theoretical frameworks, methodology, and reported outcomes. We summarize recent reports on program impacts and identify gaps or misalignments between goals and measured outcomes. The field of biology was the predominant scientific disciplinary focus. Findings suggest a lack of studies explicitly targeting 1) participation and outcomes related to learners from underrepresented populations, 2) a theoretical framework that guides program design and analysis, and, for TREs, 3) methods for translation of research experiences into K–12 instructional practices, and 4) measurement of impact on K–12 instructional practices.more » « less