Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Recent studies of ultra-diffuse galaxies (UDGs) have shown their globular cluster (GC) systems to be central in unveiling their remarkable properties and halo masses. Deep Hubble Space Telescope imaging revealed 54 GC candidates around the UDG NGC5846_UDG1 (UDG1), with a remarkable 13 per cent of the stellar light contained in the GC system. We present a kinematic analysis of UDG1’s GC system from observations with the integral field spectrograph Keck Cosmic Web Imager on the Keck II telescope. We measure recessional velocities for 19 GCs, confirming them as members of UDG1, giving a total of 20 confirmed GCs when combined with literature. Approximately, 9 per cent of the stellar light are contained just in the confirmed GCs. We determine the GC system’s velocity dispersion to be $$\sigma _{\rm GC}$$ = 29.8$$^{+6.4}_{-4.9}$$ km s$$^{-1}$$. We find that $$\sigma _{\rm GC}$$ increases with increasing magnitude, consistent with predictions for a GC system that evolved under the influence of dynamical friction. The GC system velocity dispersion is constant out to $${\sim} 1R_{\rm eff}$$. Using $$\sigma _{\rm GC}$$, we calculate $$M_{\rm dyn}$$ = $$2.09^{+1.00}_{-0.64}\times 10^{9}$$ M$$_{\odot }$$ as the dynamical mass enclosed within $$\sim$$2.5 kpc. The dark matter halo mass suggested by the GC number–halo mass relationship agrees with our dynamical mass estimate, implying a halo more massive than suggested by common stellar mass–halo mass relationships. UDG1, being GC-rich with a massive halo, fits the picture of a failed galaxy.more » « less
-
We study the quiescent ultradiffuse galaxy FCC 224 in the Fornax cluster using Hubble Space Telescope (HST) imaging, motivated by peculiar properties of its globular cluster (GC) system revealed in shallower imaging. The surface brightness fluctuation distance of FCC 224 measured from HST is 18.6 ± 2.7 Mpc, consistent with the Fornax cluster distance. We use Prospector to infer the stellar population from a combination of multiwavelength photometry (HST, ground-based, Wide-field Infrared Survey Explorer) and Keck Cosmic Web Imager spectroscopy. The galaxy has a mass-weighted age of ∼10 Gyr, metallicity [M/H] of ∼ −1.25 dex, and a very short formation e-folding time of τ ∼ 0.3 Gyr. Its 12 candidate GCs exhibit highly homogeneous g_475−I_814 colors, merely 0.04 mag bluer than the diffuse starlight, which supports a single-burst formation scenario for this galaxy. We confirm a top-heavy GC luminosity function, similar to the two dark matter deficient galaxies NGC 1052-DF2 and DF4. However, FCC 224 differs from those galaxies with relatively small GC sizes of ∼3 pc (∼35% smaller than typical for other dwarfs), and with radial mass segregation in its GC system. We are not yet able to identify a formation scenario to explain all of the GC properties in FCC 224. Follow-up measurements of the dark matter content in FCC 224 will be crucial because of the mix of similarities and differences among FCC 224, DF2, and DF4.more » « lessFree, publicly-accessible full text available March 11, 2026
-
ABSTRACT Some ultra diffuse galaxies (UDGs) reveal many more globular clusters (GCs) than classical dwarf galaxies of the same stellar mass. These UDGs, with a mass in their GC system ($$M_{\rm GC}$$) approaching 10 per cent of their host galaxy stellar mass ($$M_{\ast }$$), are also inferred to have high halo mass to stellar mass ratios ($$M_{\rm halo}/M_{\ast }$$). They have been dubbed Failed Galaxies. It is unknown what role high GC formation efficiencies and/or low destruction rates play in determining the high $$M_{\rm GC}/M_{\ast }$$ ratios of some UDGs. Here we present a simple model, which is informed by recent JWST observations of lensed galaxies and by a simulation in the literature of GC mass loss and tidal disruption in dwarf galaxies. With this simple model, we aim to constrain the effects of GC efficiency/destruction on the observed GC richness of UDGs and their variation with the integrated stellar populations of UDGs. We assume no ongoing star formation (i.e. quenching at early times) and that the disrupted GCs contribute their stars to those of the host galaxy. We find that UDGs, with high $$M_{\rm GC}/M_{\ast }$$ ratios today, are most likely the result of very high GC formation efficiencies combined with modest rates of GC destruction. The current data loosely follow the model that ranges from the mean stellar population of classical dwarfs to that of metal-poor GCs as $$M_{\rm GC}/M_{\ast }$$ increases. As more data becomes available for UDGs, our simple model can be refined and tested further.more » « less
-
ABSTRACT This study compiles stellar populations and internal properties of ultra-diffuse galaxies (UDGs) to highlight correlations with their local environment, globular cluster (GC) richness, and star formation histories. Complementing our sample of 88 UDGs, we include 36 low surface brightness dwarf galaxies with UDG-like properties, referred to as NUDGes (nearly UDGs). All galaxies were studied using the same spectral energy distribution fitting methodology to explore what sets UDGs apart from other galaxies. We show that NUDGes are similar to UDGs in all properties except for being, by definition, smaller and having higher surface brightness. We find that UDGs and NUDGes show similar behaviours in their GC populations, with the most metal-poor galaxies hosting consistently more GCs on average. This suggests that GC content may provide an effective way to distinguish extreme galaxies within the low surface brightness regime alongside traditional parameters like size and surface brightness. We confirm previous results using clustering algorithms that UDGs split into two main classes, which might be associated with the formation pathways of a puffy dwarf and a failed galaxy. The clustering applied to the UDGs + NUDGes data set yields an equivalent result. The difference in mass contained in the GC system suggests that galaxies in different environments have not simply evolved from one another but may have formed through distinct processes.more » « less
-
Abstract NGC 1052-DF2 and -DF4 are two ultradiffuse galaxies that have been reported as deficient in dark matter and associated with the same galaxy group. Recent findings suggest that DF2 and DF4 are part of a large linear substructure of dwarf galaxies that could have been formed from a high-velocity head-on encounter of two gas-rich galaxies, known as a “bullet dwarf” collision. Based on new observations from the Hubble Space Telescope, combined with existing imaging from theuband to mid-infrared, we test the bullet dwarf scenario by studying the morphologies and stellar populations of the trail dwarfs. We find no significant morphological differences between the trail dwarfs and other dwarfs in the group, while for both populations, their photometric major axes unexpectedly align parallel with the trail. We find that the trail dwarfs have significantly older ages and higher metallicities than the comparison sample, supporting the distinctiveness of the trail. These observations provide key constraints for any formation model, and we argue that they are currently best explained by the bullet dwarf collision scenario, with additional strong tests anticipated with future observations.more » « less
-
ABSTRACT In order to facilitate the future study of ultra-diffuse galaxies (UDGs), we compile a catalogue of their spectroscopic properties. Using it, we investigate some of the biases inherent in the current UDG sample that have been targeted for spectroscopy. In comparison to a larger sample of UDGs studied via their spectral energy distributions (SED), current spectroscopic targets are intrinsically brighter, have higher stellar mass, are larger, more globular cluster-rich, older, and have a wider spread in their metallicities. In particular, many spectroscopically studied UDGs have a significant fraction of their stellar mass contained within their globular cluster (GC) system. We also search for correlations between parameters in the catalogue. Of note is a correlation between alpha element abundance and metallicity, as may be expected for a ‘failed galaxy’ scenario. However, the expected correlations of metallicity with age are not found, and it is unclear if this is evidence against a ‘failed galaxy’ scenario or simply due to the low number of statistics and the presence of outliers. Finally, we attempt to segment our catalogue into different classes using a machine learning K-means method. We find that the clustering is very weak and that it is currently not warranted to split the catalogue into multiple, distinct subpopulations. Our catalogue is available online, and we aim to maintain it beyond the publication of this work.more » « less
An official website of the United States government
