Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available October 17, 2025
-
Free, publicly-accessible full text available May 30, 2025
-
Parameter calibration aims to estimate unobservable parameters used in a computer model by using physical process responses and computer model outputs. In the literature, existing studies calibrate all parameters simultaneously using an entire data set. However, in certain applications, some parameters are associated with only a subset of data. For example, in the building energy simulation, cooling (heating) season parameters should be calibrated using data collected during the cooling (heating) season only. This study provides a new multiblock calibration approach that considers such heterogeneity. Unlike existing studies that build emulators for the computer model response, such as the widely used Bayesian calibration approach, we consider multiple loss functions to be minimized, each for a block of parameters that use the corresponding data set, and estimate the parameters using a nonlinear optimization technique. We present the convergence properties under certain conditions and quantify the parameter estimation uncertainties. The superiority of our approach is demonstrated through numerical studies and a real-world building energy simulation case study. History: Bianca Maria Colosimo served as the senior editor for this article. Funding: This work was partially supported by the National Science Foundation [Grants CMMI-1662553, CMMI-2226348, and CBET-1804321]. Data Ethics & Reproducibility Note: The code capsule is available on Code Ocean at https://codeocean.com/capsule/8623151/tree/v1 and in the e-Companion to this article (available at https://doi.org/10.1287/ijds.2023.0029 ).more » « less