Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Studying how genetic variation is structured across space, and how it relates to divergence in phenotypic traits relevant to reproductive isolation, is important for our overall understanding of the speciation process. We used reduced-representation genomic data (ddRAD-seq) to examine patterns of genetic variation across the full distribution of an Andean warbler species complex (Myioborus ornatus–melanocephalus), which includes a known hybrid zone between two strikingly different plumage forms. Genetic structure largely reflects geographic variation in head plumage, some of which corresponds to major topographic barriers in the Andes. We also found evidence of isolation by distance shaping genetic patterns across the group’s broad latitudinal range. We found thatchrysopsandbairdi, two taxa with marked plumage differences that have a known hybrid zone, were characterized by low overall genetic divergence. Based on our cline analyses of both plumage and genomic hybrid indices, this hybrid zone extends for approximately 250 km, where advanced generation hybrids are likely most common. We also identified a slight difference in the centers of the plumage and genomic clines, potentially suggesting the asymmetric introgression ofchrysops-like plumage traits. By studying genetic variation in a phenotypically complex group distributed across a topographically complex area, which includes a hybrid zone, we were able to show how both geographic features and potentially sexually selected plumage traits may play a role in species formation in tropical mountainsmore » « lessFree, publicly-accessible full text available August 15, 2026
-
Genomic data can provide valuable insights into the evolutionary history of rapidly diversifying groups and the genetic basis of phenotypic differences among lineages. We used whole-genome sequencing of the warbler genus Myioborus to investigate dynamics of its recent diversification in Neotropical mountains. We found that mitochondrial and UCE phylogenies are mostly, but not fully, concordant, and we found phylogenetic support for a pattern of north-to-south and low-to-high elevation colonization in the genus. Within the ornatus-melanocephalus complex, which showed topological incongruence between our phylogenies, we found that genetic structure generally coincides with geographic variation in plumage, although three subspecies with striking plumage differences exhibit low mitochondrial divergence. The hybridizing taxa M. o. chrysops and M. m. bairdi show very shallow genomic differentiation, with marked peaks of divergence. Most of these are shared with other parulid warbler pairs, pointing to broad genomic features, like recombination rate, as the processes shaping these regions. However, other highly differentiated regions were unique to Myioborus, including one containing the gene CCDC91, which is associated with melanin-based plumage differences in several other birds. Lastly, we found higher levels of differentiation on the Z chromosome relative to autosomes, including two putative chromosomal inversions. Together, these results highlight the interplay of deep ancestral divergence, recent hybridization, and shared genomic architecture in shaping the evolution of phenotypic and genomic diversity within Myioborus.more » « lessFree, publicly-accessible full text available August 15, 2026
-
Genomic species delimitation is transforming how we understand and define species by enabling a process-oriented and efficient approach to identifying species boundaries. This review outlines the two key steps in genomic species delimitation: (a) discovering species-level units and (b) assessing their validity. Validity can be evaluated by a diversity of approaches, including applying the multispecies coalescent to delineate the population–species boundary and using estimated gene flow as a proxy for reproductive isolation. We illustrate the utility of these methods across the tree of life through a comprehensive review of published articles and case studies on birds, siphonophores, and bacteria. Despite the many benefits of genomic species delimitation, challenges remain. In particular, genomic divergence does not always accurately reflect ecological divergence and reproductive barriers, and genome heterogeneity can complicate the overall understanding of genetic divergence. We discuss these challenges and potential solutions.more » « lessFree, publicly-accessible full text available November 5, 2026
-
Abstract Tropical mountains feature marked species turnover along elevational gradients and across complex topography, resulting in great concentrations of avian biodiversity. In these landscapes, particularly among morphologically conserved and difficult to observe avian groups, species limits still require clarification. One such lineage is Scytalopus tapaculos, which are among the morphologically most conserved birds. Attention to their distinctive vocal repertoires and phylogenetic relationships has resulted in a proliferation of newly identified species, many of which are restricted range endemics. Here, we present a revised taxonomy and identify species limits among high-elevation populations of Scytalopus tapaculos inhabiting the Peruvian Andes. We employ an integrated framework using a combination of vocal information, mitochondrial DNA sequences, and appearance, gathered from our own fieldwork over the past 40 yr and supplemented with community-shared birdsong archives and museum specimens. We describe 3 new species endemic to Peru. Within all 3 of these species there is genetic differentiation, which in 2 species is mirrored by subtle geographic plumage and vocal variation. In a fourth species, Scytalopus schulenbergi, we document deep genetic divergence and plumage differences despite overall vocal similarity. We further propose that an extralimital taxon, Scytalopus opacus androstictus, be elevated to species rank, based on a diagnostic vocal character. Our results demonstrate that basic exploration and descriptive work using diverse data sources continues to identify new species of birds, particularly in tropical environs.more » « less
An official website of the United States government
