skip to main content


Title: Untangling cryptic diversity in the High Andes: Revision of the Scytalopus [magellanicus] complex (Rhinocryptidae) in Peru reveals three new species
Abstract Tropical mountains feature marked species turnover along elevational gradients and across complex topography, resulting in great concentrations of avian biodiversity. In these landscapes, particularly among morphologically conserved and difficult to observe avian groups, species limits still require clarification. One such lineage is Scytalopus tapaculos, which are among the morphologically most conserved birds. Attention to their distinctive vocal repertoires and phylogenetic relationships has resulted in a proliferation of newly identified species, many of which are restricted range endemics. Here, we present a revised taxonomy and identify species limits among high-elevation populations of Scytalopus tapaculos inhabiting the Peruvian Andes. We employ an integrated framework using a combination of vocal information, mitochondrial DNA sequences, and appearance, gathered from our own fieldwork over the past 40 yr and supplemented with community-shared birdsong archives and museum specimens. We describe 3 new species endemic to Peru. Within all 3 of these species there is genetic differentiation, which in 2 species is mirrored by subtle geographic plumage and vocal variation. In a fourth species, Scytalopus schulenbergi, we document deep genetic divergence and plumage differences despite overall vocal similarity. We further propose that an extralimital taxon, Scytalopus opacus androstictus, be elevated to species rank, based on a diagnostic vocal character. Our results demonstrate that basic exploration and descriptive work using diverse data sources continues to identify new species of birds, particularly in tropical environs.  more » « less
Award ID(s):
1655624
PAR ID:
10183933
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Auk
Volume:
137
Issue:
2
ISSN:
0004-8038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Birds display a rainbow of eye colours, but this trait has been little studied compared with plumage coloration. Avian eye colour variation occurs at all phylogenetic scales: it can be conserved throughout whole families or vary within one species, yet the evolutionary importance of this eye colour variation is under‐studied. Here, we summarize knowledge of the causes of eye colour variation at three primary levels: mechanistic, genetic and evolutionary. Mechanistically, we show that avian iris pigments include melanin and carotenoids, which also play major roles in plumage colour, as well as purines and pteridines, which are often found as pigments in non‐avian taxa. Genetically, we survey classical breeding studies and recent genomic work on domestic birds that have identified potential ‘eye colour genes’, including one associated with pteridine pigmentation in pigeons. Finally, from an evolutionary standpoint, we present and discuss several hypotheses explaining the adaptive significance of eye colour variation. Many of these hypotheses suggest that bird eye colour plays an important role in intraspecific signalling, particularly as an indicator of age or mate quality, although the importance of eye colour may differ between species and few evolutionary hypotheses have been directly tested. We suggest that future studies of avian eye colour should consider all three levels, including broad‐scale iris pigment analyses across bird species, genome sequencing studies to identify loci associated with eye colour variation, and behavioural experiments and comparative phylogenetic analyses to test adaptive hypotheses. By examining these proximate and ultimate causes of eye colour variation in birds, we hope that our review will encourage future research to understand the ecological and evolutionary significance of this striking avian trait.

     
    more » « less
  2. vonHoldt, Bridgett (Ed.)
    Abstract The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs—which exhibit a stunning range of cryptic and conspicuous forms—inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and—increasingly—genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied—but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas—mechanistic links between color vision and color production, and speciation—that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species. 
    more » « less
  3. Townsend, Simon W. (Ed.)
    Vocal learning is thought to have evolved in 3 orders of birds (songbirds, parrots, and hummingbirds), with each showing similar brain regions that have comparable gene expression specializations relative to the surrounding forebrain motor circuitry. Here, we searched for signatures of these same gene expression specializations in previously uncharacterized brains of 7 assumed vocal non-learning bird lineages across the early branches of the avian family tree. Our findings using a conserved marker for the song system found little evidence of specializations in these taxa, except for woodpeckers. Instead, woodpeckers possessed forebrain regions that were anatomically similar to the pallial song nuclei of vocal learning birds. Field studies of free-living downy woodpeckers revealed that these brain nuclei showed increased expression of immediate early genes (IEGs) when males produce their iconic drum displays, the elaborate bill-hammering behavior that individuals use to compete for territories, much like birdsong. However, these specialized areas did not show increased IEG expression with vocalization or flight. We further confirmed that other woodpecker species contain these brain nuclei, suggesting that these brain regions are a common feature of the woodpecker brain. We therefore hypothesize that ancient forebrain nuclei for refined motor control may have given rise to not only the song control systems of vocal learning birds, but also the drumming system of woodpeckers. 
    more » « less
  4. Acoustic indices are an efficient method for monitoring dense aggregations of vocal animals but require understanding the acoustic ecology of the species under examination. The present understanding of avian behavior and vocal development is primarily derived from the research of songbirds (Passeriformes). However, given that behavior and environment can differ greatly among bird orders, passerine birdsong may be insufficient to define the vocal ontogeny of non-passerine birds. Like many colonial nesting seabirds, the Adélie penguin (Pygoscelis adeliae) is adapted to loud and congested environments with limited cues to identify kinship within aggregations of conspecifics. In addition to physical or geographical cues to identify offspring, adult P. adeliae rely on vocal modulation. Numerous studies have been conducted on mutual vocal modulations in mature P. adeliae, but limited research has explored the vocal repertoire of the chicks and how their vocalizations evolve over time. Using the deep learning-based system, DeepSqueak, this study characterized the vocal ontogeny of P. adeliae chicks in the West Antarctic Peninsula to aid in autonomously tracking their age. Understanding the phenological communication patterns of vocal-dependent seabirds can help measure the impact of climate change on this indicator species through non-invasive methods.

     
    more » « less
  5. Abstract

    Variation in susceptibility is ubiquitous in multi‐host, multi‐parasite assemblages, and can have profound implications for ecology and evolution in these systems. The extent to which susceptibility to parasites is phylogenetically conserved among hosts can be revealed by analysing diverse regional communities. We screened for haemosporidian parasites in 3983 birds representing 40 families and 523 species, spanning ~ 4500 m elevation in the tropical Andes. To quantify the influence of host phylogeny on infection status, we applied Bayesian phylogenetic multilevel models that included a suite of environmental, spatial, temporal, life history and ecological predictors. We found evidence of deeply conserved susceptibility across the avian tree; host phylogeny explained substantial variation in infection status, and results were robust to phylogenetic uncertainty. Our study suggests that susceptibility is governed, in part, by conserved, latent aspects of anti‐parasite defence. This demonstrates the importance of deep phylogeny for understanding present‐day ecological interactions.

     
    more » « less