skip to main content

Search for: All records

Creators/Authors contains: "Cai, Zhipeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multi-label image recognition has been an indispensable fundamental component for many real computer vision applications. However, a severe threat of privacy leakage in multi-label image recognition has been overlooked by existing studies. To fill this gap, two privacy-preserving models, Privacy-Preserving Multi-label Graph Convolutional Networks (P2-ML-GCN) and Robust P2-ML-GCN (RP2-ML-GCN), are developed in this article, where differential privacy mechanism is implemented on the model’s outputs so as to defend black-box attack and avoid large aggregated noise simultaneously. In particular, a regularization term is exploited in the loss function of RP2-ML-GCN to increase the model prediction accuracy and robustness. After that, a proper differential privacy mechanism is designed with the intention of decreasing the bias of loss function in P2-ML-GCN and increasing prediction accuracy. Besides, we analyze that a bounded global sensitivity can mitigate excessive noise’s side effect and obtain a performance improvement for multi-label image recognition in our models. Theoretical proof shows that our two models can guarantee differential privacy for model’s outputs, weights and input features while preserving model robustness. Finally, comprehensive experiments are conducted to validate the advantages of our proposed models, including the implementation of differential privacy on model’s outputs, the incorporation of regularization term into loss function,more »and the adoption of bounded global sensitivity for multi-label image recognition.« less
    Free, publicly-accessible full text available August 31, 2023
  2. null (Ed.)
  3. Generative Adversarial Networks (GANs) have promoted a variety of applications in computer vision and natural language processing, among others, due to its generative model’s compelling ability to generate realistic examples plausibly drawn from an existing distribution of samples. GAN not only provides impressive performance on data generation-based tasks but also stimulates fertilization for privacy and security oriented research because of its game theoretic optimization strategy. Unfortunately, there are no comprehensive surveys on GAN in privacy and security, which motivates this survey to summarize systematically. The existing works are classified into proper categories based on privacy and security functions, and this survey conducts a comprehensive analysis of their advantages and drawbacks. Considering that GAN in privacy and security is still at a very initial stage and has imposed unique challenges that are yet to be well addressed, this article also sheds light on some potential privacy and security applications with GAN and elaborates on some future research directions.
  4. Li, Wenzhong (Ed.)
    In recent years, a series of researches have revealed that the Deep Neural Network (DNN) is vulnerable to adversarial attack, and a number of attack methods have been proposed. Among those methods, an extremely sly type of attack named the one-pixel attack can mislead DNNs to misclassify an image via only modifying one pixel of the image, leading to severe security threats to DNN-based information systems. Currently, no method can really detect the one-pixel attack, for which the blank will be filled by this paper. This paper proposes two detection methods, including trigger detection and candidate detection. The trigger detection method analyzes the vulnerability of DNN models and gives the most suspected pixel that is modified by the one-pixel attack. The candidate detection method identifies a set of most suspected pixels using a differential evolution-based heuristic algorithm. The real-data experiments show that the trigger detection method has a detection success rate of 9.1%, and the candidate detection method achieves a detection success rate of 30.1%, which can validate the effectiveness of our methods.
  5. null (Ed.)