skip to main content


Search for: All records

Creators/Authors contains: "Canalizo, Gabriela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Low-ionization broad absorption line QSOs (LoBALs) are suspected to be merging systems in which extreme, active galactic nucleus-driven outflows have been triggered. Whether or not LoBALs are uniquely associated with mergers, however, has yet to be established. To characterize the morphologies of LoBALs, we present the first high-resolution morphological analysis of a volume-limited sample of 22 Sloan Digital Sky Survey (SDSS)-selected LoBALs at 0.5 <z< 0.6 from Hubble Space Telescope Wide Field Camera 3 observations. Host galaxies are resolved in 86% of the systems in F125W, which is sensitive to old stellar populations, while only 18% are detected in F475W, which traces young, unobscured stellar populations. Signs of recent or ongoing tidal interaction are present in 45%–64% of the hosts, including double nuclei, tidal tails, bridges, plumes, shells, and extended debris. Ongoing interaction with a companion is apparent in 27%−41% of the LoBALs, with as much as 1/3 of the sample representing late-stage mergers at projected nuclear separations <10 kpc. Detailed surface brightness modeling indicates that 41% of the hosts are bulge dominated while only 18% are disks. We discuss trends in various properties as a function of merger stage and parametric morphology. Notably, mergers are associated with slower, dustier winds than those seen in undisturbed/unresolved hosts. Our results favor an evolutionary scenario in which quasar-level accretion during various merger stages is associated with the observed outflows in low-zLoBALs. We discuss differences between LoBALs and FeLoBALs and show that selection via the traditional balnicity index would have excluded all but one of the mergers.

     
    more » « less
  2. Abstract

    Feedback likely plays a crucial role in resolving discrepancies between observations and theoretical predictions of dwarf galaxy properties. Stellar feedback was once believed to be sufficient to explain these discrepancies, but it has thus far failed to fully reconcile theory and observations. The recent discovery of energetic galaxy-wide outflows in dwarf galaxies hosting active galactic nuclei (AGNs) suggests that AGN feedback may have a larger role in the evolution of dwarf galaxies than previously suspected. In order to assess the relative importance of stellar versus AGN feedback in these galaxies, we perform a detailed Keck/KCWI optical integral field spectroscopic study of a sample of low-redshift star-forming (SF) dwarf galaxies that show outflows in ionized gas in their Sloan Digital Sky Survey spectra. We characterize the outflows and compare them to observations of AGN-driven outflows in dwarfs. We find that SF dwarfs have outflow components that have comparable widths (W80) to those of outflows in AGN dwarfs, but are much less blueshifted, indicating that SF dwarfs have significantly slower outflows than their AGN counterparts. Outflows in SF dwarfs are spatially resolved and significantly more extended than those in AGN dwarfs. The mass-loss, momentum, and energy rates of star-formation-driven outflows are much lower than those of AGN-driven outflows. Our results indicate that AGN feedback in the form of gas outflows may play an important role in dwarf galaxies and should be considered along with SF feedback in models of dwarf galaxy evolution.

     
    more » « less
  3. Abstract

    While it is generally believed that supermassive black holes (SMBHs) lie in most galaxies with bulges, few SMBHs have been confirmed in bulgeless galaxies. Identifying such a population could provide important insights to the BH seed population and secular BH growth. To this end, we obtained near-infrared (NIR) spectroscopic observations of a sample of low-redshift bulgeless galaxies with mid-infrared colors suggestive of active galactic nuclei (AGNs). We find additional evidence of AGN activity (such as coronal lines and broad permitted lines) in 69% (9/13) of the sample, demonstrating that mid-infrared selection is a powerful tool to detect AGNs. More than half of the galaxies with confirmed AGN activity show fast outflows in [Oiii] in the optical and/or [Sivi] in the NIR, with the latter generally having much faster velocities that are also correlated to their spatial extent. We are also able to obtain virial BH masses for some targets and find they fall within the scatter of other late-type galaxies in theMBHMstellarrelation. The fact that they lack a significant bulge component indicates that secular processes, likely independent of major mergers, grew these BHs to supermassive sizes. Finally, we analyze the rotational gas kinematics and find two notable exceptions: two AGN hosts with outflows that appear to be rotating faster than expected. There is an indication that these two galaxies have stellar masses significantly lower than expected from their dark matter halo masses. This, combined with the observed AGN activity and strong gas outflows, may be evidence of the effects of AGN feedback.

     
    more » « less
  4. ABSTRACT

    Powerful outflows are thought to play a critical role in galaxy evolution and black hole growth. We present the first large-scale systematic study of ionized outflows in paired galaxies and post-mergers compared to a robust control sample of isolated galaxies. We isolate the impact of the merger environment to determine if outflow properties depend on merger stage. Our sample contains ∼4000 paired galaxies and ∼250 post-mergers in the local universe (0.02 ≤ z ≤ 0.2) from the Sloan Digital Sky Survey Data Release 7 (SDSS DR 7) matched in stellar mass, redshift, local density of galaxies, and [O iii] λ5007 luminosity to a control sample of isolated galaxies. By fitting the [O iii] λ5007 line, we find ionized outflows in ∼15 per cent of our entire sample. Outflows are much rarer in star-forming galaxies compared to active galactic nuclei (AGNs), and outflow incidence and velocity increase with [O iii] λ5007 luminosity. Outflow incidence is significantly elevated in the optical + mid-infrared selected AGN compared to purely optical AGN; over 60 per cent show outflows at the highest luminosities ($L_{\mathrm{[OIII]~\lambda 5007}}\, \gtrsim$ 1042 erg s−1), suggesting mid-infrared AGN selection favours galaxies with powerful outflows, at least for higher [O iii] λ5007 luminosities. However, we find no statistically significant difference in outflow incidence, velocity, and luminosity in mergers compared to isolated galaxies, and there is no dependence on merger stage. Therefore, while interactions are predicted to drive gas inflows and subsequently trigger nuclear star formation and accretion activity, when the power source of the outflow is controlled for, the merging environment has no further impact on the large-scale ionized outflows as traced by [O iii] λ5007.

     
    more » « less
  5. null (Ed.)
  6. ABSTRACT We present spatially resolved kinematic measurements of stellar and ionized gas components of dwarf galaxies in the stellar mass range $10^{8.5}\!-\!10^{10} \, \mathrm{M}_{\odot }$, selected from Sloan Digital Sky Survey DR7 and DR8 and followed up with Keck/Low-Resolution Imaging Spectrometer spectroscopy. We study the potential effects of active galactic nuclei (AGNs) on Galaxy-wide gas kinematics by comparing rotation curves of 26 Galaxies containing AGNs, and 19 control Galaxies with no optical or infrared signs of AGNs. We find a strong association between AGN activity and disturbed gas kinematics in the host Galaxies. While star-forming Galaxies in this sample tend to have orderly gas discs that co-rotate with the stars, 73 per cent of the AGNs have disturbed gas. We find that 5 out of 45 Galaxies have gaseous components in counter-rotation with their stars, and all Galaxies exhibiting counter-rotation contain AGNs. Six out of seven isolated Galaxies with disturbed ionized gas host AGNs. At least three AGNs fall clearly below the stellar–halo mass relation, which could be interpreted as evidence for ongoing star formation suppression. Taken together, these results provide new evidence supporting the ability of AGN to influence gas kinematics and suppress star formation in dwarf galaxies. This further demonstrates the importance of including AGN as a feedback mechanism in galaxy formation models in the low-mass regime. 
    more » « less
  7. ABSTRACT We present Bayesian active galactic nucleus (AGN) Decomposition Analysis for Sloan Digital Sky Survey (SDSS) Spectra, an open source spectral analysis code designed for automatic detailed deconvolution of AGN and host galaxy spectra, implemented in python, and designed for the next generation of large-scale surveys. The code simultaneously fits all spectral components, including power-law continuum, stellar line-of-sight velocity distribution, Fe ii emission, as well as forbidden (narrow), permitted (broad), and outflow emission line features, all performed using Markov chain Monte Carlo to obtain robust uncertainties and autocorrelation analysis to assess parameter convergence. Our code also utilizes multiprocessing for batch fitting large samples of spectra while efficiently managing memory and computation resources and is currently being used in a cluster environment to fit thousands of SDSS spectra. We use our code to perform a correlation analysis of 63 SDSS type 1 AGNs with evidence of strong non-gravitational outflow kinematics in the [O iii] λ5007 emission feature. We confirm findings from previous studies that show the core of the [O iii] profile is a suitable surrogate for stellar velocity dispersion σ*, however there is evidence that the core experiences broadening that scales with outflow velocity. We find sufficient evidence that σ*, [O iii] core dispersion, and the non-gravitational outflow dispersion of the [O iii] profile form a plane whose fit results in a scatter of ∼0.1 dex. Finally, we discuss the implications, caveats, and recommendations when using the [O iii] dispersion as a surrogate for σ* for the MBH−σ* relation. 
    more » « less
  8. Abstract

    We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors,f, used in traditional reverberation-mapping analyses. We extend our sample by including prior results from Code for AGN Reverberation and Modeling of Emission Lines (caramel) studies that have utilized our methods. Aiming to improve the precision of black-hole mass estimates, as well as uncover any regularities in the behavior of the broad-line region (BLR), we search for correlations betweenfand other AGN/BLR parameters. We find (i) evidence for a correlation between the virial coefficientlog10(fmean,σ)and black-hole mass, (ii) marginal evidence for a similar correlation betweenlog10(frms,σ)and black-hole mass, (iii) marginal evidence for an anticorrelation of BLR disk thickness withlog10(fmean,FWHM)andlog10(frms,FWHM), and (iv) marginal evidence for an anticorrelation of inclination angle withlog10(fmean,FWHM),log10(frms,σ), andlog10(fmean,σ). Last, we find marginal evidence for a correlation between line-profile shape, when using the root-mean-square spectrum,log10(FWHM/σ)rms, and the virial coefficient,log10(frms,σ), and investigate how BLR properties might be related to line-profile shape usingcaramelmodels.

     
    more » « less
  9. null (Ed.)